embedded_fat/fat/volume.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
//! FAT-specific volume support.
use crate::{
debug,
fat::{
lfn::LfnVisitor, Bpb, Fat16Info, Fat32Info, FatSpecificInfo, FatType, InfoSector,
OnDiskDirEntry, RESERVED_ENTRIES,
},
filesystem::ToShortFileName,
trace, warn, Attributes, Block, BlockCount, BlockDevice, BlockIdx, ClusterId, DirEntry,
DirectoryInfo, Error, ShortFileName, TimeSource, VolumeType,
};
use byteorder::{ByteOrder, LittleEndian};
use core::convert::TryFrom;
use core::ops::ControlFlow;
use super::BlockCache;
/// The name given to a particular FAT formatted volume.
#[cfg_attr(feature = "defmt-log", derive(defmt::Format))]
#[derive(Clone, PartialEq, Eq)]
pub struct VolumeName {
data: [u8; 11],
}
impl VolumeName {
/// Create a new VolumeName
pub fn new(data: [u8; 11]) -> VolumeName {
VolumeName { data }
}
}
impl core::fmt::Debug for VolumeName {
fn fmt(&self, fmt: &mut core::fmt::Formatter) -> core::fmt::Result {
match core::str::from_utf8(&self.data) {
Ok(s) => write!(fmt, "{:?}", s),
Err(_e) => write!(fmt, "{:?}", &self.data),
}
}
}
/// Identifies a FAT16 or FAT32 Volume on the disk.
#[cfg_attr(feature = "defmt-log", derive(defmt::Format))]
#[derive(Debug, PartialEq, Eq)]
pub struct FatVolume {
/// The block number of the start of the partition. All other BlockIdx values are relative to this.
pub(crate) lba_start: BlockIdx,
/// The number of blocks in this volume
pub(crate) num_blocks: BlockCount,
/// The name of this volume
pub(crate) name: VolumeName,
/// Number of 512 byte blocks (or Blocks) in a cluster
pub(crate) blocks_per_cluster: u8,
/// The block the data starts in. Relative to start of partition (so add
/// `self.lba_offset` before passing to volume manager)
pub(crate) first_data_block: BlockCount,
/// The block the FAT starts in. Relative to start of partition (so add
/// `self.lba_offset` before passing to volume manager)
pub(crate) fat_start: BlockCount,
/// Expected number of free clusters
pub(crate) free_clusters_count: Option<u32>,
/// Number of the next expected free cluster
pub(crate) next_free_cluster: Option<ClusterId>,
/// Total number of clusters
pub(crate) cluster_count: u32,
/// Type of FAT
pub(crate) fat_specific_info: FatSpecificInfo,
}
impl FatVolume {
/// Write a new entry in the FAT
pub async fn update_info_sector<D>(&mut self, block_device: &D) -> Result<(), Error<D::Error>>
where
D: BlockDevice,
{
match &self.fat_specific_info {
FatSpecificInfo::Fat16(_) => {
// FAT16 volumes don't have an info sector
}
FatSpecificInfo::Fat32(fat32_info) => {
if self.free_clusters_count.is_none() && self.next_free_cluster.is_none() {
return Ok(());
}
let mut blocks = [Block::new()];
block_device
.read(&mut blocks, fat32_info.info_location, "read_info_sector")
.await
.map_err(Error::DeviceError)?;
let block = &mut blocks[0];
if let Some(count) = self.free_clusters_count {
block[488..492].copy_from_slice(&count.to_le_bytes());
}
if let Some(next_free_cluster) = self.next_free_cluster {
block[492..496].copy_from_slice(&next_free_cluster.0.to_le_bytes());
}
block_device
.write(&blocks, fat32_info.info_location)
.await
.map_err(Error::DeviceError)?;
}
}
Ok(())
}
/// Get the type of FAT this volume is
pub(crate) fn get_fat_type(&self) -> FatType {
match &self.fat_specific_info {
FatSpecificInfo::Fat16(_) => FatType::Fat16,
FatSpecificInfo::Fat32(_) => FatType::Fat32,
}
}
/// Write a new entry in the FAT
async fn update_fat<D>(
&mut self,
block_device: &D,
cluster: ClusterId,
new_value: ClusterId,
) -> Result<(), Error<D::Error>>
where
D: BlockDevice,
{
let mut blocks = [Block::new()];
let this_fat_block_num;
match &self.fat_specific_info {
FatSpecificInfo::Fat16(_fat16_info) => {
let fat_offset = cluster.0 * 2;
this_fat_block_num = self.lba_start + self.fat_start.offset_bytes(fat_offset);
let this_fat_ent_offset = (fat_offset % Block::LEN_U32) as usize;
block_device
.read(&mut blocks, this_fat_block_num, "read_fat")
.await
.map_err(Error::DeviceError)?;
// See <https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system>
let entry = match new_value {
ClusterId::INVALID => 0xFFF6,
ClusterId::BAD => 0xFFF7,
ClusterId::EMPTY => 0x0000,
ClusterId::END_OF_FILE => 0xFFFF,
_ => new_value.0 as u16,
};
LittleEndian::write_u16(
&mut blocks[0][this_fat_ent_offset..=this_fat_ent_offset + 1],
entry,
);
}
FatSpecificInfo::Fat32(_fat32_info) => {
// FAT32 => 4 bytes per entry
let fat_offset = cluster.0 * 4;
this_fat_block_num = self.lba_start + self.fat_start.offset_bytes(fat_offset);
let this_fat_ent_offset = (fat_offset % Block::LEN_U32) as usize;
block_device
.read(&mut blocks, this_fat_block_num, "read_fat")
.await
.map_err(Error::DeviceError)?;
let entry = match new_value {
ClusterId::INVALID => 0x0FFF_FFF6,
ClusterId::BAD => 0x0FFF_FFF7,
ClusterId::EMPTY => 0x0000_0000,
_ => new_value.0,
};
let existing = LittleEndian::read_u32(
&blocks[0][this_fat_ent_offset..=this_fat_ent_offset + 3],
);
let new = (existing & 0xF000_0000) | (entry & 0x0FFF_FFFF);
LittleEndian::write_u32(
&mut blocks[0][this_fat_ent_offset..=this_fat_ent_offset + 3],
new,
);
}
}
block_device
.write(&blocks, this_fat_block_num)
.await
.map_err(Error::DeviceError)?;
Ok(())
}
/// Look in the FAT to see which cluster comes next.
pub(crate) async fn next_cluster<D>(
&self,
block_device: &D,
cluster: ClusterId,
fat_block_cache: &mut BlockCache,
) -> Result<ClusterId, Error<D::Error>>
where
D: BlockDevice,
{
match &self.fat_specific_info {
FatSpecificInfo::Fat16(_fat16_info) => {
let fat_offset = cluster.0 * 2;
let this_fat_block_num = self.lba_start + self.fat_start.offset_bytes(fat_offset);
let this_fat_ent_offset = (fat_offset % Block::LEN_U32) as usize;
let block = fat_block_cache
.read(block_device, this_fat_block_num, "next_cluster")
.await?;
let fat_entry =
LittleEndian::read_u16(&block[this_fat_ent_offset..=this_fat_ent_offset + 1]);
match fat_entry {
0xFFF7 => {
// Bad cluster
Err(Error::BadCluster)
}
0xFFF8..=0xFFFF => {
// There is no next cluster
Err(Error::EndOfFile)
}
f => {
// Seems legit
Ok(ClusterId(u32::from(f)))
}
}
}
FatSpecificInfo::Fat32(_fat32_info) => {
let fat_offset = cluster.0 * 4;
let this_fat_block_num = self.lba_start + self.fat_start.offset_bytes(fat_offset);
let this_fat_ent_offset = (fat_offset % Block::LEN_U32) as usize;
let block = fat_block_cache
.read(block_device, this_fat_block_num, "next_cluster")
.await?;
let fat_entry =
LittleEndian::read_u32(&block[this_fat_ent_offset..=this_fat_ent_offset + 3])
& 0x0FFF_FFFF;
match fat_entry {
0x0000_0000 => {
// Jumped to free space
Err(Error::UnterminatedFatChain)
}
0x0FFF_FFF7 => {
// Bad cluster
Err(Error::BadCluster)
}
0x0000_0001 | 0x0FFF_FFF8..=0x0FFF_FFFF => {
// There is no next cluster
Err(Error::EndOfFile)
}
f => {
// Seems legit
Ok(ClusterId(f))
}
}
}
}
}
/// Number of bytes in a cluster.
pub(crate) fn bytes_per_cluster(&self) -> u32 {
u32::from(self.blocks_per_cluster) * Block::LEN_U32
}
/// Converts a cluster number (or `Cluster`) to a block number (or
/// `BlockIdx`). Gives an absolute `BlockIdx` you can pass to the
/// volume manager.
pub(crate) fn cluster_to_block(&self, cluster: ClusterId) -> BlockIdx {
match &self.fat_specific_info {
FatSpecificInfo::Fat16(fat16_info) => {
let block_num = match cluster {
ClusterId::ROOT_DIR => fat16_info.first_root_dir_block,
ClusterId(c) => {
// FirstSectorofCluster = ((N – 2) * BPB_SecPerClus) + FirstDataSector;
let first_block_of_cluster =
BlockCount((c - 2) * u32::from(self.blocks_per_cluster));
self.first_data_block + first_block_of_cluster
}
};
self.lba_start + block_num
}
FatSpecificInfo::Fat32(fat32_info) => {
let cluster_num = match cluster {
ClusterId::ROOT_DIR => fat32_info.first_root_dir_cluster.0,
c => c.0,
};
// FirstSectorofCluster = ((N – 2) * BPB_SecPerClus) + FirstDataSector;
let first_block_of_cluster =
BlockCount((cluster_num - 2) * u32::from(self.blocks_per_cluster));
self.lba_start + self.first_data_block + first_block_of_cluster
}
}
}
/// Finds a empty entry space and writes the new entry to it, allocates a new cluster if it's
/// needed
pub(crate) async fn write_new_directory_entry<D, T>(
&mut self,
block_device: &D,
time_source: &T,
dir: &DirectoryInfo,
name: ShortFileName,
attributes: Attributes,
) -> Result<DirEntry, Error<D::Error>>
where
D: BlockDevice,
T: TimeSource,
{
match &self.fat_specific_info {
FatSpecificInfo::Fat16(fat16_info) => {
// Root directories on FAT16 have a fixed size, because they use
// a specially reserved space on disk (see
// `first_root_dir_block`). Other directories can have any size
// as they are made of regular clusters.
let mut current_cluster = Some(dir.cluster);
let mut first_dir_block_num = match dir.cluster {
ClusterId::ROOT_DIR => self.lba_start + fat16_info.first_root_dir_block,
_ => self.cluster_to_block(dir.cluster),
};
let dir_size = match dir.cluster {
ClusterId::ROOT_DIR => {
let len_bytes =
u32::from(fat16_info.root_entries_count) * OnDiskDirEntry::LEN_U32;
BlockCount::from_bytes(len_bytes)
}
_ => BlockCount(u32::from(self.blocks_per_cluster)),
};
// Walk the directory
let mut blocks = [Block::new()];
while let Some(cluster) = current_cluster {
for block in first_dir_block_num.range(dir_size) {
block_device
.read(&mut blocks, block, "read_dir")
.await
.map_err(Error::DeviceError)?;
let entries_per_block = Block::LEN / OnDiskDirEntry::LEN;
for entry in 0..entries_per_block {
let start = entry * OnDiskDirEntry::LEN;
let end = (entry + 1) * OnDiskDirEntry::LEN;
let dir_entry = OnDiskDirEntry::new(&blocks[0][start..end]);
// 0x00 or 0xE5 represents a free entry
if !dir_entry.is_valid() {
let ctime = time_source.get_timestamp();
let entry = DirEntry::new(
name,
attributes,
ClusterId::EMPTY,
ctime,
block,
start as u32,
);
blocks[0][start..start + 32]
.copy_from_slice(&entry.serialize(FatType::Fat16)[..]);
block_device
.write(&blocks, block)
.await
.map_err(Error::DeviceError)?;
return Ok(entry);
}
}
}
if cluster != ClusterId::ROOT_DIR {
let mut block_cache = BlockCache::empty();
current_cluster = match self
.next_cluster(block_device, cluster, &mut block_cache)
.await
{
Ok(n) => {
first_dir_block_num = self.cluster_to_block(n);
Some(n)
}
Err(Error::EndOfFile) => {
let c = self
.alloc_cluster(block_device, Some(cluster), true)
.await?;
first_dir_block_num = self.cluster_to_block(c);
Some(c)
}
_ => None,
};
} else {
current_cluster = None;
}
}
Err(Error::NotEnoughSpace)
}
FatSpecificInfo::Fat32(fat32_info) => {
// All directories on FAT32 have a cluster chain but the root
// dir starts in a specified cluster.
let mut first_dir_block_num = match dir.cluster {
ClusterId::ROOT_DIR => self.cluster_to_block(fat32_info.first_root_dir_cluster),
_ => self.cluster_to_block(dir.cluster),
};
let mut current_cluster = Some(dir.cluster);
let mut blocks = [Block::new()];
let dir_size = BlockCount(u32::from(self.blocks_per_cluster));
while let Some(cluster) = current_cluster {
for block in first_dir_block_num.range(dir_size) {
block_device
.read(&mut blocks, block, "read_dir")
.await
.map_err(Error::DeviceError)?;
for entry in 0..Block::LEN / OnDiskDirEntry::LEN {
let start = entry * OnDiskDirEntry::LEN;
let end = (entry + 1) * OnDiskDirEntry::LEN;
let dir_entry = OnDiskDirEntry::new(&blocks[0][start..end]);
// 0x00 or 0xE5 represents a free entry
if !dir_entry.is_valid() {
let ctime = time_source.get_timestamp();
let entry = DirEntry::new(
name,
attributes,
ClusterId(0),
ctime,
block,
start as u32,
);
blocks[0][start..start + 32]
.copy_from_slice(&entry.serialize(FatType::Fat32)[..]);
block_device
.write(&blocks, block)
.await
.map_err(Error::DeviceError)?;
return Ok(entry);
}
}
}
let mut block_cache = BlockCache::empty();
current_cluster = match self
.next_cluster(block_device, cluster, &mut block_cache)
.await
{
Ok(n) => {
first_dir_block_num = self.cluster_to_block(n);
Some(n)
}
Err(Error::EndOfFile) => {
let c = self
.alloc_cluster(block_device, Some(cluster), true)
.await?;
first_dir_block_num = self.cluster_to_block(c);
Some(c)
}
_ => None,
};
}
Err(Error::NotEnoughSpace)
}
}
}
/// Calls callback `func` with every valid entry in the given directory.
/// Useful for performing directory listings.
pub(crate) async fn iterate_dir<D, F, T>(
&self,
block_device: &D,
dir: &DirectoryInfo,
mut func: F,
) -> Result<Option<T>, Error<D::Error>>
where
F: FnMut(&DirEntry) -> ControlFlow<T>,
D: BlockDevice,
{
self.iterate_dir_generic(block_device, dir, |_, dir_entry| match dir_entry {
Some(dir_entry) => func(&dir_entry),
None => ControlFlow::Continue(()),
})
.await
}
/// Calls callback `func` with every valid entry in the given directory.
/// Useful for performing directory listings.
pub(crate) async fn iterate_lfn_dir<D, F, T>(
&self,
block_device: &D,
dir: &DirectoryInfo,
mut func: F,
) -> Result<Option<T>, Error<D::Error>>
where
F: FnMut(Option<&str>, &DirEntry) -> ControlFlow<T>,
D: BlockDevice,
{
let mut lfn_visitor = LfnVisitor::default();
self.iterate_dir_generic(block_device, dir, |on_disk_entry, dir_entry| {
assert_eq!(on_disk_entry.is_lfn(), dir_entry.is_none());
match dir_entry {
Some(dir_entry) => {
let lfn = lfn_visitor.take(&dir_entry.name);
func(lfn, &dir_entry)
}
None => {
let lfn_entry = on_disk_entry.lfn_contents().unwrap();
lfn_visitor.visit(&lfn_entry);
ControlFlow::Continue(())
}
}
})
.await
}
pub(crate) async fn iterate_dir_generic<D, F, T>(
&self,
block_device: &D,
dir: &DirectoryInfo,
mut func: F,
) -> Result<Option<T>, Error<D::Error>>
where
F: FnMut(&OnDiskDirEntry, Option<DirEntry>) -> ControlFlow<T>,
D: BlockDevice,
{
match &self.fat_specific_info {
FatSpecificInfo::Fat16(fat16_info) => {
// Root directories on FAT16 have a fixed size, because they use
// a specially reserved space on disk (see
// `first_root_dir_block`). Other directories can have any size
// as they are made of regular clusters.
let mut current_cluster = Some(dir.cluster);
let mut first_dir_block_num = match dir.cluster {
ClusterId::ROOT_DIR => self.lba_start + fat16_info.first_root_dir_block,
_ => self.cluster_to_block(dir.cluster),
};
let dir_size = match dir.cluster {
ClusterId::ROOT_DIR => {
let len_bytes =
u32::from(fat16_info.root_entries_count) * OnDiskDirEntry::LEN_U32;
BlockCount::from_bytes(len_bytes)
}
_ => BlockCount(u32::from(self.blocks_per_cluster)),
};
let mut block_cache = BlockCache::empty();
while let Some(cluster) = current_cluster {
for block_idx in first_dir_block_num.range(dir_size) {
let block = block_cache
.read(block_device, block_idx, "read_dir")
.await?;
for entry in 0..Block::LEN / OnDiskDirEntry::LEN {
let start = entry * OnDiskDirEntry::LEN;
let end = (entry + 1) * OnDiskDirEntry::LEN;
let dir_entry = OnDiskDirEntry::new(&block[start..end]);
if dir_entry.is_end() {
// Can quit early
return Ok(None);
} else if dir_entry.is_valid() {
let entry = if dir_entry.is_lfn() {
None
} else {
// Safe, since Block::LEN always fits on a u32
let start = u32::try_from(start).unwrap();
Some(dir_entry.get_entry(FatType::Fat16, block_idx, start))
};
if let ControlFlow::Break(ret) = func(&dir_entry, entry) {
return Ok(Some(ret));
};
}
}
}
if cluster != ClusterId::ROOT_DIR {
current_cluster = match self
.next_cluster(block_device, cluster, &mut block_cache)
.await
{
Ok(n) => {
first_dir_block_num = self.cluster_to_block(n);
Some(n)
}
_ => None,
};
} else {
current_cluster = None;
}
}
Ok(None)
}
FatSpecificInfo::Fat32(fat32_info) => {
// All directories on FAT32 have a cluster chain but the root
// dir starts in a specified cluster.
let mut current_cluster = match dir.cluster {
ClusterId::ROOT_DIR => Some(fat32_info.first_root_dir_cluster),
_ => Some(dir.cluster),
};
let mut blocks = [Block::new()];
let mut block_cache = BlockCache::empty();
while let Some(cluster) = current_cluster {
let block_idx = self.cluster_to_block(cluster);
for block in block_idx.range(BlockCount(u32::from(self.blocks_per_cluster))) {
block_device
.read(&mut blocks, block, "read_dir")
.await
.map_err(Error::DeviceError)?;
for entry in 0..Block::LEN / OnDiskDirEntry::LEN {
let start = entry * OnDiskDirEntry::LEN;
let end = (entry + 1) * OnDiskDirEntry::LEN;
let dir_entry = OnDiskDirEntry::new(&blocks[0][start..end]);
if dir_entry.is_end() {
// Can quit early
return Ok(None);
} else if dir_entry.is_valid() {
let entry = if dir_entry.is_lfn() {
None
} else {
// Safe, since Block::LEN always fits on a u32
let start = u32::try_from(start).unwrap();
Some(dir_entry.get_entry(FatType::Fat32, block, start))
};
if let ControlFlow::Break(ret) = func(&dir_entry, entry) {
return Ok(Some(ret));
};
}
}
}
current_cluster = match self
.next_cluster(block_device, cluster, &mut block_cache)
.await
{
Ok(n) => Some(n),
_ => None,
};
}
Ok(None)
}
}
}
/// Get an entry from the given directory
pub(crate) async fn find_directory_entry<D>(
&self,
block_device: &D,
dir: &DirectoryInfo,
match_name: &ShortFileName,
) -> Result<DirEntry, Error<D::Error>>
where
D: BlockDevice,
{
match &self.fat_specific_info {
FatSpecificInfo::Fat16(fat16_info) => {
// Root directories on FAT16 have a fixed size, because they use
// a specially reserved space on disk (see
// `first_root_dir_block`). Other directories can have any size
// as they are made of regular clusters.
let mut current_cluster = Some(dir.cluster);
let mut first_dir_block_num = match dir.cluster {
ClusterId::ROOT_DIR => self.lba_start + fat16_info.first_root_dir_block,
_ => self.cluster_to_block(dir.cluster),
};
let dir_size = match dir.cluster {
ClusterId::ROOT_DIR => {
let len_bytes =
u32::from(fat16_info.root_entries_count) * OnDiskDirEntry::LEN_U32;
BlockCount::from_bytes(len_bytes)
}
_ => BlockCount(u32::from(self.blocks_per_cluster)),
};
let mut block_cache = BlockCache::empty();
while let Some(cluster) = current_cluster {
for block in first_dir_block_num.range(dir_size) {
match self
.find_entry_in_block(block_device, FatType::Fat16, match_name, block)
.await
{
Err(Error::FileNotFound) => continue,
x => return x,
}
}
if cluster != ClusterId::ROOT_DIR {
current_cluster = match self
.next_cluster(block_device, cluster, &mut block_cache)
.await
{
Ok(n) => {
first_dir_block_num = self.cluster_to_block(n);
Some(n)
}
_ => None,
};
} else {
current_cluster = None;
}
}
Err(Error::FileNotFound)
}
FatSpecificInfo::Fat32(fat32_info) => {
let mut current_cluster = match dir.cluster {
ClusterId::ROOT_DIR => Some(fat32_info.first_root_dir_cluster),
_ => Some(dir.cluster),
};
let mut block_cache = BlockCache::empty();
while let Some(cluster) = current_cluster {
let block_idx = self.cluster_to_block(cluster);
for block in block_idx.range(BlockCount(u32::from(self.blocks_per_cluster))) {
match self
.find_entry_in_block(block_device, FatType::Fat32, match_name, block)
.await
{
Err(Error::FileNotFound) => continue,
x => return x,
}
}
current_cluster = match self
.next_cluster(block_device, cluster, &mut block_cache)
.await
{
Ok(n) => Some(n),
_ => None,
}
}
Err(Error::FileNotFound)
}
}
}
/// Finds an entry in a given block of directory entries.
async fn find_entry_in_block<D>(
&self,
block_device: &D,
fat_type: FatType,
match_name: &ShortFileName,
block: BlockIdx,
) -> Result<DirEntry, Error<D::Error>>
where
D: BlockDevice,
{
let mut blocks = [Block::new()];
block_device
.read(&mut blocks, block, "read_dir")
.await
.map_err(Error::DeviceError)?;
for entry in 0..Block::LEN / OnDiskDirEntry::LEN {
let start = entry * OnDiskDirEntry::LEN;
let end = (entry + 1) * OnDiskDirEntry::LEN;
let dir_entry = OnDiskDirEntry::new(&blocks[0][start..end]);
if dir_entry.is_end() {
// Can quit early
break;
} else if dir_entry.matches(match_name) {
// Found it
// Safe, since Block::LEN always fits on a u32
let start = u32::try_from(start).unwrap();
return Ok(dir_entry.get_entry(fat_type, block, start));
}
}
Err(Error::FileNotFound)
}
#[allow(missing_docs)]
pub(crate) async fn find_lfn_directory_entry<D>(
&self,
block_device: &D,
dir: &DirectoryInfo,
match_name: &str,
) -> Result<DirEntry, Error<D::Error>>
where
D: BlockDevice,
{
// TODO should this check LFN _and_ short name?
self.iterate_lfn_dir(block_device, dir, |lfn, dir_entry| {
if match lfn {
Some(name) => name == match_name,
None => match_name
.to_short_filename()
.map(|name| name == dir_entry.name)
.unwrap_or(false),
} {
ControlFlow::Break(dir_entry.clone())
} else {
ControlFlow::Continue(())
}
})
.await?
.ok_or(Error::FileNotFound)
}
/// Delete an entry from the given directory
pub(crate) async fn delete_directory_entry<D>(
&self,
block_device: &D,
dir: &DirectoryInfo,
match_name: &ShortFileName,
) -> Result<(), Error<D::Error>>
where
D: BlockDevice,
{
match &self.fat_specific_info {
FatSpecificInfo::Fat16(fat16_info) => {
// Root directories on FAT16 have a fixed size, because they use
// a specially reserved space on disk (see
// `first_root_dir_block`). Other directories can have any size
// as they are made of regular clusters.
let mut current_cluster = Some(dir.cluster);
let mut first_dir_block_num = match dir.cluster {
ClusterId::ROOT_DIR => self.lba_start + fat16_info.first_root_dir_block,
_ => self.cluster_to_block(dir.cluster),
};
let dir_size = match dir.cluster {
ClusterId::ROOT_DIR => {
let len_bytes =
u32::from(fat16_info.root_entries_count) * OnDiskDirEntry::LEN_U32;
BlockCount::from_bytes(len_bytes)
}
_ => BlockCount(u32::from(self.blocks_per_cluster)),
};
// Walk the directory
while let Some(cluster) = current_cluster {
// Scan the cluster / root dir a block at a time
for block in first_dir_block_num.range(dir_size) {
match self
.delete_entry_in_block(block_device, match_name, block)
.await
{
Err(Error::FileNotFound) => {
// Carry on
}
x => {
// Either we deleted it OK, or there was some
// catastrophic error reading/writing the disk.
return x;
}
}
}
// if it's not the root dir, find the next cluster so we can keep looking
if cluster != ClusterId::ROOT_DIR {
let mut block_cache = BlockCache::empty();
current_cluster = match self
.next_cluster(block_device, cluster, &mut block_cache)
.await
{
Ok(n) => {
first_dir_block_num = self.cluster_to_block(n);
Some(n)
}
_ => None,
};
} else {
current_cluster = None;
}
}
// Ok, give up
}
FatSpecificInfo::Fat32(fat32_info) => {
// Root directories on FAT32 start at a specified cluster, but
// they can have any length.
let mut current_cluster = match dir.cluster {
ClusterId::ROOT_DIR => Some(fat32_info.first_root_dir_cluster),
_ => Some(dir.cluster),
};
// Walk the directory
while let Some(cluster) = current_cluster {
// Scan the cluster a block at a time
let block_idx = self.cluster_to_block(cluster);
for block in block_idx.range(BlockCount(u32::from(self.blocks_per_cluster))) {
match self
.delete_entry_in_block(block_device, match_name, block)
.await
{
Err(Error::FileNotFound) => {
// Carry on
continue;
}
x => {
// Either we deleted it OK, or there was some
// catastrophic error reading/writing the disk.
return x;
}
}
}
// Find the next cluster
let mut block_cache = BlockCache::empty();
current_cluster = match self
.next_cluster(block_device, cluster, &mut block_cache)
.await
{
Ok(n) => Some(n),
_ => None,
}
}
// Ok, give up
}
}
// If we get here we never found the right entry in any of the
// blocks that made up the directory
Err(Error::FileNotFound)
}
/// Deletes a directory entry from a block of directory entries.
///
/// Entries are marked as deleted by setting the first byte of the file name
/// to a special value.
async fn delete_entry_in_block<D>(
&self,
block_device: &D,
match_name: &ShortFileName,
block: BlockIdx,
) -> Result<(), Error<D::Error>>
where
D: BlockDevice,
{
let mut blocks = [Block::new()];
block_device
.read(&mut blocks, block, "read_dir")
.await
.map_err(Error::DeviceError)?;
for entry in 0..Block::LEN / OnDiskDirEntry::LEN {
let start = entry * OnDiskDirEntry::LEN;
let end = (entry + 1) * OnDiskDirEntry::LEN;
let dir_entry = OnDiskDirEntry::new(&blocks[0][start..end]);
if dir_entry.is_end() {
// Can quit early
break;
} else if dir_entry.matches(match_name) {
let mut blocks = blocks;
blocks[0].contents[start] = 0xE5;
return block_device
.write(&blocks, block)
.await
.map_err(Error::DeviceError);
}
}
Err(Error::FileNotFound)
}
/// Finds the next free cluster after the start_cluster and before end_cluster
pub(crate) async fn find_next_free_cluster<D>(
&self,
block_device: &D,
start_cluster: ClusterId,
end_cluster: ClusterId,
) -> Result<ClusterId, Error<D::Error>>
where
D: BlockDevice,
{
let mut blocks = [Block::new()];
let mut current_cluster = start_cluster;
match &self.fat_specific_info {
FatSpecificInfo::Fat16(_fat16_info) => {
while current_cluster.0 < end_cluster.0 {
trace!(
"current_cluster={:?}, end_cluster={:?}",
current_cluster,
end_cluster
);
let fat_offset = current_cluster.0 * 2;
trace!("fat_offset = {:?}", fat_offset);
let this_fat_block_num =
self.lba_start + self.fat_start.offset_bytes(fat_offset);
trace!("this_fat_block_num = {:?}", this_fat_block_num);
let mut this_fat_ent_offset = usize::try_from(fat_offset % Block::LEN_U32)
.map_err(|_| Error::ConversionError)?;
trace!("Reading block {:?}", this_fat_block_num);
block_device
.read(&mut blocks, this_fat_block_num, "next_cluster")
.await
.map_err(Error::DeviceError)?;
while this_fat_ent_offset <= Block::LEN - 2 {
let fat_entry = LittleEndian::read_u16(
&blocks[0][this_fat_ent_offset..=this_fat_ent_offset + 1],
);
if fat_entry == 0 {
return Ok(current_cluster);
}
this_fat_ent_offset += 2;
current_cluster += 1;
}
}
}
FatSpecificInfo::Fat32(_fat32_info) => {
while current_cluster.0 < end_cluster.0 {
trace!(
"current_cluster={:?}, end_cluster={:?}",
current_cluster,
end_cluster
);
let fat_offset = current_cluster.0 * 4;
trace!("fat_offset = {:?}", fat_offset);
let this_fat_block_num =
self.lba_start + self.fat_start.offset_bytes(fat_offset);
trace!("this_fat_block_num = {:?}", this_fat_block_num);
let mut this_fat_ent_offset = usize::try_from(fat_offset % Block::LEN_U32)
.map_err(|_| Error::ConversionError)?;
trace!("Reading block {:?}", this_fat_block_num);
block_device
.read(&mut blocks, this_fat_block_num, "next_cluster")
.await
.map_err(Error::DeviceError)?;
while this_fat_ent_offset <= Block::LEN - 4 {
let fat_entry = LittleEndian::read_u32(
&blocks[0][this_fat_ent_offset..=this_fat_ent_offset + 3],
) & 0x0FFF_FFFF;
if fat_entry == 0 {
return Ok(current_cluster);
}
this_fat_ent_offset += 4;
current_cluster += 1;
}
}
}
}
warn!("Out of space...");
Err(Error::NotEnoughSpace)
}
/// Tries to allocate a cluster
pub(crate) async fn alloc_cluster<D>(
&mut self,
block_device: &D,
prev_cluster: Option<ClusterId>,
zero: bool,
) -> Result<ClusterId, Error<D::Error>>
where
D: BlockDevice,
{
debug!("Allocating new cluster, prev_cluster={:?}", prev_cluster);
let end_cluster = ClusterId(self.cluster_count + RESERVED_ENTRIES);
let start_cluster = match self.next_free_cluster {
Some(cluster) if cluster.0 < end_cluster.0 => cluster,
_ => ClusterId(RESERVED_ENTRIES),
};
trace!(
"Finding next free between {:?}..={:?}",
start_cluster,
end_cluster
);
let new_cluster = match self
.find_next_free_cluster(block_device, start_cluster, end_cluster)
.await
{
Ok(cluster) => cluster,
Err(_) if start_cluster.0 > RESERVED_ENTRIES => {
debug!(
"Retrying, finding next free between {:?}..={:?}",
ClusterId(RESERVED_ENTRIES),
end_cluster
);
self.find_next_free_cluster(block_device, ClusterId(RESERVED_ENTRIES), end_cluster)
.await?
}
Err(e) => return Err(e),
};
self.update_fat(block_device, new_cluster, ClusterId::END_OF_FILE)
.await?;
if let Some(cluster) = prev_cluster {
trace!(
"Updating old cluster {:?} to {:?} in FAT",
cluster,
new_cluster
);
self.update_fat(block_device, cluster, new_cluster).await?;
}
trace!(
"Finding next free between {:?}..={:?}",
new_cluster,
end_cluster
);
self.next_free_cluster = match self
.find_next_free_cluster(block_device, new_cluster, end_cluster)
.await
{
Ok(cluster) => Some(cluster),
Err(_) if new_cluster.0 > RESERVED_ENTRIES => {
match self
.find_next_free_cluster(block_device, ClusterId(RESERVED_ENTRIES), end_cluster)
.await
{
Ok(cluster) => Some(cluster),
Err(e) => return Err(e),
}
}
Err(e) => return Err(e),
};
debug!("Next free cluster is {:?}", self.next_free_cluster);
if let Some(ref mut number_free_cluster) = self.free_clusters_count {
*number_free_cluster -= 1;
};
if zero {
let blocks = [Block::new()];
let first_block = self.cluster_to_block(new_cluster);
let num_blocks = BlockCount(u32::from(self.blocks_per_cluster));
for block in first_block.range(num_blocks) {
block_device
.write(&blocks, block)
.await
.map_err(Error::DeviceError)?;
}
}
debug!("All done, returning {:?}", new_cluster);
Ok(new_cluster)
}
/// Marks the input cluster as an EOF and all the subsequent clusters in the chain as free
pub(crate) async fn truncate_cluster_chain<D>(
&mut self,
block_device: &D,
cluster: ClusterId,
) -> Result<(), Error<D::Error>>
where
D: BlockDevice,
{
if cluster.0 < RESERVED_ENTRIES {
// file doesn't have any valid cluster allocated, there is nothing to do
return Ok(());
}
let mut next = {
let mut block_cache = BlockCache::empty();
match self
.next_cluster(block_device, cluster, &mut block_cache)
.await
{
Ok(n) => n,
Err(Error::EndOfFile) => return Ok(()),
Err(e) => return Err(e),
}
};
if let Some(ref mut next_free_cluster) = self.next_free_cluster {
if next_free_cluster.0 > next.0 {
*next_free_cluster = next;
}
} else {
self.next_free_cluster = Some(next);
}
self.update_fat(block_device, cluster, ClusterId::END_OF_FILE)
.await?;
loop {
let mut block_cache = BlockCache::empty();
match self
.next_cluster(block_device, next, &mut block_cache)
.await
{
Ok(n) => {
self.update_fat(block_device, next, ClusterId::EMPTY)
.await?;
next = n;
}
Err(Error::EndOfFile) => {
self.update_fat(block_device, next, ClusterId::EMPTY)
.await?;
break;
}
Err(e) => return Err(e),
}
if let Some(ref mut number_free_cluster) = self.free_clusters_count {
*number_free_cluster += 1;
};
}
Ok(())
}
}
/// Load the boot parameter block from the start of the given partition and
/// determine if the partition contains a valid FAT16 or FAT32 file system.
pub async fn parse_volume<D>(
block_device: &D,
lba_start: BlockIdx,
num_blocks: BlockCount,
) -> Result<VolumeType, Error<D::Error>>
where
D: BlockDevice,
D::Error: core::fmt::Debug,
{
let mut blocks = [Block::new()];
block_device
.read(&mut blocks, lba_start, "read_bpb")
.await
.map_err(Error::DeviceError)?;
let block = &blocks[0];
let bpb = Bpb::create_from_bytes(block).map_err(Error::FormatError)?;
match bpb.fat_type {
FatType::Fat16 => {
if bpb.bytes_per_block() as usize != Block::LEN {
return Err(Error::BadBlockSize(bpb.bytes_per_block()));
}
// FirstDataSector = BPB_ResvdSecCnt + (BPB_NumFATs * FATSz) + RootDirSectors;
let root_dir_blocks = ((u32::from(bpb.root_entries_count()) * OnDiskDirEntry::LEN_U32)
+ (Block::LEN_U32 - 1))
/ Block::LEN_U32;
let fat_start = BlockCount(u32::from(bpb.reserved_block_count()));
let first_root_dir_block =
fat_start + BlockCount(u32::from(bpb.num_fats()) * bpb.fat_size());
let first_data_block = first_root_dir_block + BlockCount(root_dir_blocks);
let mut volume = FatVolume {
lba_start,
num_blocks,
name: VolumeName { data: [0u8; 11] },
blocks_per_cluster: bpb.blocks_per_cluster(),
first_data_block: (first_data_block),
fat_start: BlockCount(u32::from(bpb.reserved_block_count())),
free_clusters_count: None,
next_free_cluster: None,
cluster_count: bpb.total_clusters(),
fat_specific_info: FatSpecificInfo::Fat16(Fat16Info {
root_entries_count: bpb.root_entries_count(),
first_root_dir_block,
}),
};
volume.name.data[..].copy_from_slice(bpb.volume_label());
Ok(VolumeType::Fat(volume))
}
FatType::Fat32 => {
// FirstDataSector = BPB_ResvdSecCnt + (BPB_NumFATs * FATSz);
let first_data_block = u32::from(bpb.reserved_block_count())
+ (u32::from(bpb.num_fats()) * bpb.fat_size());
// Safe to unwrap since this is a Fat32 Type
let info_location = bpb.fs_info_block().unwrap();
let mut info_blocks = [Block::new()];
block_device
.read(
&mut info_blocks,
lba_start + info_location,
"read_info_sector",
)
.await
.map_err(Error::DeviceError)?;
let info_block = &info_blocks[0];
let info_sector =
InfoSector::create_from_bytes(info_block).map_err(Error::FormatError)?;
let mut volume = FatVolume {
lba_start,
num_blocks,
name: VolumeName { data: [0u8; 11] },
blocks_per_cluster: bpb.blocks_per_cluster(),
first_data_block: BlockCount(first_data_block),
fat_start: BlockCount(u32::from(bpb.reserved_block_count())),
free_clusters_count: info_sector.free_clusters_count(),
next_free_cluster: info_sector.next_free_cluster(),
cluster_count: bpb.total_clusters(),
fat_specific_info: FatSpecificInfo::Fat32(Fat32Info {
info_location: lba_start + info_location,
first_root_dir_cluster: ClusterId(bpb.first_root_dir_cluster()),
}),
};
volume.name.data[..].copy_from_slice(bpb.volume_label());
Ok(VolumeType::Fat(volume))
}
}
}