use core::{
convert::{TryFrom, TryInto},
fmt::{Binary, Debug, LowerHex, Octal, UpperHex},
hash::Hash,
num::TryFromIntError,
};
use super::*;
pub trait ByteOrder:
Copy + Clone + Debug + Display + Eq + PartialEq + Ord + PartialOrd + Hash + private::Sealed
{
#[doc(hidden)]
const ORDER: Order;
}
mod private {
pub trait Sealed {}
impl Sealed for super::BigEndian {}
impl Sealed for super::LittleEndian {}
}
#[allow(missing_copy_implementations, missing_debug_implementations)]
#[doc(hidden)]
pub enum Order {
BigEndian,
LittleEndian,
}
#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub enum BigEndian {}
impl ByteOrder for BigEndian {
const ORDER: Order = Order::BigEndian;
}
impl Display for BigEndian {
#[inline]
fn fmt(&self, _: &mut Formatter<'_>) -> fmt::Result {
match *self {}
}
}
#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub enum LittleEndian {}
impl ByteOrder for LittleEndian {
const ORDER: Order = Order::LittleEndian;
}
impl Display for LittleEndian {
#[inline]
fn fmt(&self, _: &mut Formatter<'_>) -> fmt::Result {
match *self {}
}
}
#[cfg(target_endian = "big")]
pub type NativeEndian = BigEndian;
#[cfg(target_endian = "little")]
pub type NativeEndian = LittleEndian;
pub type NetworkEndian = BigEndian;
pub type BE = BigEndian;
pub type LE = LittleEndian;
macro_rules! impl_fmt_trait {
($name:ident, $native:ident, $trait:ident) => {
impl<O: ByteOrder> $trait for $name<O> {
#[inline(always)]
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
$trait::fmt(&self.get(), f)
}
}
};
}
macro_rules! impl_fmt_traits {
($name:ident, $native:ident, "floating point number") => {
impl_fmt_trait!($name, $native, Display);
};
($name:ident, $native:ident, "unsigned integer") => {
impl_fmt_traits!($name, $native, @all_types);
};
($name:ident, $native:ident, "signed integer") => {
impl_fmt_traits!($name, $native, @all_types);
};
($name:ident, $native:ident, @all_types) => {
impl_fmt_trait!($name, $native, Display);
impl_fmt_trait!($name, $native, Octal);
impl_fmt_trait!($name, $native, LowerHex);
impl_fmt_trait!($name, $native, UpperHex);
impl_fmt_trait!($name, $native, Binary);
};
}
macro_rules! impl_ops_traits {
($name:ident, $native:ident, "floating point number") => {
impl_ops_traits!($name, $native, @all_types);
impl_ops_traits!($name, $native, @signed_integer_floating_point);
impl<O: ByteOrder> PartialOrd for $name<O> {
#[inline(always)]
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
self.get().partial_cmp(&other.get())
}
}
};
($name:ident, $native:ident, "unsigned integer") => {
impl_ops_traits!($name, $native, @signed_unsigned_integer);
impl_ops_traits!($name, $native, @all_types);
};
($name:ident, $native:ident, "signed integer") => {
impl_ops_traits!($name, $native, @signed_unsigned_integer);
impl_ops_traits!($name, $native, @signed_integer_floating_point);
impl_ops_traits!($name, $native, @all_types);
};
($name:ident, $native:ident, @signed_unsigned_integer) => {
impl_ops_traits!(@without_byteorder_swap $name, $native, BitAnd, bitand, BitAndAssign, bitand_assign);
impl_ops_traits!(@without_byteorder_swap $name, $native, BitOr, bitor, BitOrAssign, bitor_assign);
impl_ops_traits!(@without_byteorder_swap $name, $native, BitXor, bitxor, BitXorAssign, bitxor_assign);
impl_ops_traits!(@with_byteorder_swap $name, $native, Shl, shl, ShlAssign, shl_assign);
impl_ops_traits!(@with_byteorder_swap $name, $native, Shr, shr, ShrAssign, shr_assign);
impl<O> core::ops::Not for $name<O> {
type Output = $name<O>;
#[inline(always)]
fn not(self) -> $name<O> {
let self_native = $native::from_ne_bytes(self.0);
$name((!self_native).to_ne_bytes(), PhantomData)
}
}
impl<O: ByteOrder> PartialOrd for $name<O> {
#[inline(always)]
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl<O: ByteOrder> Ord for $name<O> {
#[inline(always)]
fn cmp(&self, other: &Self) -> Ordering {
self.get().cmp(&other.get())
}
}
impl<O: ByteOrder> PartialOrd<$native> for $name<O> {
#[inline(always)]
fn partial_cmp(&self, other: &$native) -> Option<Ordering> {
self.get().partial_cmp(other)
}
}
};
($name:ident, $native:ident, @signed_integer_floating_point) => {
impl<O: ByteOrder> core::ops::Neg for $name<O> {
type Output = $name<O>;
#[inline(always)]
fn neg(self) -> $name<O> {
let self_native: $native = self.get();
#[allow(clippy::arithmetic_side_effects)]
$name::<O>::new(-self_native)
}
}
};
($name:ident, $native:ident, @all_types) => {
impl_ops_traits!(@with_byteorder_swap $name, $native, Add, add, AddAssign, add_assign);
impl_ops_traits!(@with_byteorder_swap $name, $native, Div, div, DivAssign, div_assign);
impl_ops_traits!(@with_byteorder_swap $name, $native, Mul, mul, MulAssign, mul_assign);
impl_ops_traits!(@with_byteorder_swap $name, $native, Rem, rem, RemAssign, rem_assign);
impl_ops_traits!(@with_byteorder_swap $name, $native, Sub, sub, SubAssign, sub_assign);
};
(@with_byteorder_swap $name:ident, $native:ident, $trait:ident, $method:ident, $trait_assign:ident, $method_assign:ident) => {
impl<O: ByteOrder> core::ops::$trait<$name<O>> for $name<O> {
type Output = $name<O>;
#[inline(always)]
fn $method(self, rhs: $name<O>) -> $name<O> {
let self_native: $native = self.get();
let rhs_native: $native = rhs.get();
let result_native = core::ops::$trait::$method(self_native, rhs_native);
$name::<O>::new(result_native)
}
}
impl<O: ByteOrder> core::ops::$trait<$name<O>> for $native {
type Output = $name<O>;
#[inline(always)]
fn $method(self, rhs: $name<O>) -> $name<O> {
let rhs_native: $native = rhs.get();
let result_native = core::ops::$trait::$method(self, rhs_native);
$name::<O>::new(result_native)
}
}
impl<O: ByteOrder> core::ops::$trait<$native> for $name<O> {
type Output = $name<O>;
#[inline(always)]
fn $method(self, rhs: $native) -> $name<O> {
let self_native: $native = self.get();
let result_native = core::ops::$trait::$method(self_native, rhs);
$name::<O>::new(result_native)
}
}
impl<O: ByteOrder> core::ops::$trait_assign<$name<O>> for $name<O> {
#[inline(always)]
fn $method_assign(&mut self, rhs: $name<O>) {
*self = core::ops::$trait::$method(*self, rhs);
}
}
impl<O: ByteOrder> core::ops::$trait_assign<$name<O>> for $native {
#[inline(always)]
fn $method_assign(&mut self, rhs: $name<O>) {
let rhs_native: $native = rhs.get();
*self = core::ops::$trait::$method(*self, rhs_native);
}
}
impl<O: ByteOrder> core::ops::$trait_assign<$native> for $name<O> {
#[inline(always)]
fn $method_assign(&mut self, rhs: $native) {
*self = core::ops::$trait::$method(*self, rhs);
}
}
};
(@without_byteorder_swap $name:ident, $native:ident, $trait:ident, $method:ident, $trait_assign:ident, $method_assign:ident) => {
impl<O: ByteOrder> core::ops::$trait<$name<O>> for $name<O> {
type Output = $name<O>;
#[inline(always)]
fn $method(self, rhs: $name<O>) -> $name<O> {
let self_native = $native::from_ne_bytes(self.0);
let rhs_native = $native::from_ne_bytes(rhs.0);
let result_native = core::ops::$trait::$method(self_native, rhs_native);
$name(result_native.to_ne_bytes(), PhantomData)
}
}
impl<O: ByteOrder> core::ops::$trait<$name<O>> for $native {
type Output = $name<O>;
#[inline(always)]
fn $method(self, rhs: $name<O>) -> $name<O> {
let rhs_native = $native::from_ne_bytes(rhs.0);
let slf_byteorder = $name::<O>::new(self);
let slf_native = $native::from_ne_bytes(slf_byteorder.0);
let result_native = core::ops::$trait::$method(slf_native, rhs_native);
$name(result_native.to_ne_bytes(), PhantomData)
}
}
impl<O: ByteOrder> core::ops::$trait<$native> for $name<O> {
type Output = $name<O>;
#[inline(always)]
fn $method(self, rhs: $native) -> $name<O> {
let rhs_byteorder = $name::<O>::new(rhs);
let rhs_native = $native::from_ne_bytes(rhs_byteorder.0);
let slf_native = $native::from_ne_bytes(self.0);
let result_native = core::ops::$trait::$method(slf_native, rhs_native);
$name(result_native.to_ne_bytes(), PhantomData)
}
}
impl<O: ByteOrder> core::ops::$trait_assign<$name<O>> for $name<O> {
#[inline(always)]
fn $method_assign(&mut self, rhs: $name<O>) {
*self = core::ops::$trait::$method(*self, rhs);
}
}
impl<O: ByteOrder> core::ops::$trait_assign<$name<O>> for $native {
#[inline(always)]
fn $method_assign(&mut self, rhs: $name<O>) {
let rhs_native = rhs.get();
*self = core::ops::$trait::$method(*self, rhs_native);
}
}
impl<O: ByteOrder> core::ops::$trait_assign<$native> for $name<O> {
#[inline(always)]
fn $method_assign(&mut self, rhs: $native) {
*self = core::ops::$trait::$method(*self, rhs);
}
}
};
}
macro_rules! doc_comment {
($x:expr, $($tt:tt)*) => {
#[doc = $x]
$($tt)*
};
}
macro_rules! define_max_value_constant {
($name:ident, $bytes:expr, "unsigned integer") => {
pub const MAX_VALUE: $name<O> = $name([0xFFu8; $bytes], PhantomData);
};
($name:ident, $bytes:expr, "signed integer") => {};
($name:ident, $bytes:expr, "floating point number") => {};
}
macro_rules! define_type {
(
$article:ident,
$description:expr,
$name:ident,
$native:ident,
$bits:expr,
$bytes:expr,
$from_be_fn:path,
$to_be_fn:path,
$from_le_fn:path,
$to_le_fn:path,
$number_kind:tt,
[$($larger_native:ty),*],
[$($larger_native_try:ty),*],
[$($larger_byteorder:ident),*],
[$($larger_byteorder_try:ident),*]
) => {
doc_comment! {
concat!($description, " stored in a given byte order.
`", stringify!($name), "` is like the native `", stringify!($native), "` type with
two major differences: First, it has no alignment requirement (its alignment is 1).
Second, the endianness of its memory layout is given by the type parameter `O`,
which can be any type which implements [`ByteOrder`]. In particular, this refers
to [`BigEndian`], [`LittleEndian`], [`NativeEndian`], and [`NetworkEndian`].
", stringify!($article), " `", stringify!($name), "` can be constructed using
the [`new`] method, and its contained value can be obtained as a native
`",stringify!($native), "` using the [`get`] method, or updated in place with
the [`set`] method. In all cases, if the endianness `O` is not the same as the
endianness of the current platform, an endianness swap will be performed in
order to uphold the invariants that a) the layout of `", stringify!($name), "`
has endianness `O` and that, b) the layout of `", stringify!($native), "` has
the platform's native endianness.
`", stringify!($name), "` implements [`FromBytes`], [`IntoBytes`], and [`Unaligned`],
making it useful for parsing and serialization. See the module documentation for an
example of how it can be used for parsing UDP packets.
[`new`]: crate::byteorder::", stringify!($name), "::new
[`get`]: crate::byteorder::", stringify!($name), "::get
[`set`]: crate::byteorder::", stringify!($name), "::set
[`FromBytes`]: crate::FromBytes
[`IntoBytes`]: crate::IntoBytes
[`Unaligned`]: crate::Unaligned"),
#[derive(Copy, Clone, Eq, PartialEq, Hash)]
#[cfg_attr(any(feature = "derive", test), derive(KnownLayout, Immutable, FromBytes, IntoBytes, Unaligned))]
#[repr(transparent)]
pub struct $name<O>([u8; $bytes], PhantomData<O>);
}
#[cfg(not(any(feature = "derive", test)))]
impl_known_layout!(O => $name<O>);
safety_comment! {
impl_or_verify!(O => Immutable for $name<O>);
impl_or_verify!(O => TryFromBytes for $name<O>);
impl_or_verify!(O => FromZeros for $name<O>);
impl_or_verify!(O => FromBytes for $name<O>);
impl_or_verify!(O => IntoBytes for $name<O>);
impl_or_verify!(O => Unaligned for $name<O>);
}
impl<O> Default for $name<O> {
#[inline(always)]
fn default() -> $name<O> {
$name::ZERO
}
}
impl<O> $name<O> {
pub const ZERO: $name<O> = $name([0u8; $bytes], PhantomData);
define_max_value_constant!($name, $bytes, $number_kind);
#[must_use = "has no side effects"]
#[inline(always)]
pub const fn from_bytes(bytes: [u8; $bytes]) -> $name<O> {
$name(bytes, PhantomData)
}
#[must_use = "has no side effects"]
#[inline(always)]
pub const fn to_bytes(self) -> [u8; $bytes] {
self.0
}
}
impl<O: ByteOrder> $name<O> {
maybe_const_trait_bounded_fn! {
#[must_use = "has no side effects"]
#[inline(always)]
pub const fn new(n: $native) -> $name<O> {
let bytes = match O::ORDER {
Order::BigEndian => $to_be_fn(n),
Order::LittleEndian => $to_le_fn(n),
};
$name(bytes, PhantomData)
}
}
maybe_const_trait_bounded_fn! {
#[must_use = "has no side effects"]
#[inline(always)]
pub const fn get(self) -> $native {
match O::ORDER {
Order::BigEndian => $from_be_fn(self.0),
Order::LittleEndian => $from_le_fn(self.0),
}
}
}
#[inline(always)]
pub fn set(&mut self, n: $native) {
*self = Self::new(n);
}
}
impl<O: ByteOrder> From<$name<O>> for [u8; $bytes] {
#[inline(always)]
fn from(x: $name<O>) -> [u8; $bytes] {
x.0
}
}
impl<O: ByteOrder> From<[u8; $bytes]> for $name<O> {
#[inline(always)]
fn from(bytes: [u8; $bytes]) -> $name<O> {
$name(bytes, PhantomData)
}
}
impl<O: ByteOrder> From<$name<O>> for $native {
#[inline(always)]
fn from(x: $name<O>) -> $native {
x.get()
}
}
impl<O: ByteOrder> From<$native> for $name<O> {
#[inline(always)]
fn from(x: $native) -> $name<O> {
$name::new(x)
}
}
$(
impl<O: ByteOrder> From<$name<O>> for $larger_native {
#[inline(always)]
fn from(x: $name<O>) -> $larger_native {
x.get().into()
}
}
)*
$(
impl<O: ByteOrder> TryFrom<$larger_native_try> for $name<O> {
type Error = TryFromIntError;
#[inline(always)]
fn try_from(x: $larger_native_try) -> Result<$name<O>, TryFromIntError> {
$native::try_from(x).map($name::new)
}
}
)*
$(
impl<O: ByteOrder, P: ByteOrder> From<$name<O>> for $larger_byteorder<P> {
#[inline(always)]
fn from(x: $name<O>) -> $larger_byteorder<P> {
$larger_byteorder::new(x.get().into())
}
}
)*
$(
impl<O: ByteOrder, P: ByteOrder> TryFrom<$larger_byteorder_try<P>> for $name<O> {
type Error = TryFromIntError;
#[inline(always)]
fn try_from(x: $larger_byteorder_try<P>) -> Result<$name<O>, TryFromIntError> {
x.get().try_into().map($name::new)
}
}
)*
impl<O> AsRef<[u8; $bytes]> for $name<O> {
#[inline(always)]
fn as_ref(&self) -> &[u8; $bytes] {
&self.0
}
}
impl<O> AsMut<[u8; $bytes]> for $name<O> {
#[inline(always)]
fn as_mut(&mut self) -> &mut [u8; $bytes] {
&mut self.0
}
}
impl<O> PartialEq<$name<O>> for [u8; $bytes] {
#[inline(always)]
fn eq(&self, other: &$name<O>) -> bool {
self.eq(&other.0)
}
}
impl<O> PartialEq<[u8; $bytes]> for $name<O> {
#[inline(always)]
fn eq(&self, other: &[u8; $bytes]) -> bool {
self.0.eq(other)
}
}
impl<O: ByteOrder> PartialEq<$native> for $name<O> {
#[inline(always)]
fn eq(&self, other: &$native) -> bool {
self.get().eq(other)
}
}
impl_fmt_traits!($name, $native, $number_kind);
impl_ops_traits!($name, $native, $number_kind);
impl<O: ByteOrder> Debug for $name<O> {
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
f.debug_tuple(stringify!($name)).field(&self.get()).finish()
}
}
};
}
define_type!(
A,
"A 16-bit unsigned integer",
U16,
u16,
16,
2,
u16::from_be_bytes,
u16::to_be_bytes,
u16::from_le_bytes,
u16::to_le_bytes,
"unsigned integer",
[u32, u64, u128, usize],
[u32, u64, u128, usize],
[U32, U64, U128, Usize],
[U32, U64, U128, Usize]
);
define_type!(
A,
"A 32-bit unsigned integer",
U32,
u32,
32,
4,
u32::from_be_bytes,
u32::to_be_bytes,
u32::from_le_bytes,
u32::to_le_bytes,
"unsigned integer",
[u64, u128],
[u64, u128],
[U64, U128],
[U64, U128]
);
define_type!(
A,
"A 64-bit unsigned integer",
U64,
u64,
64,
8,
u64::from_be_bytes,
u64::to_be_bytes,
u64::from_le_bytes,
u64::to_le_bytes,
"unsigned integer",
[u128],
[u128],
[U128],
[U128]
);
define_type!(
A,
"A 128-bit unsigned integer",
U128,
u128,
128,
16,
u128::from_be_bytes,
u128::to_be_bytes,
u128::from_le_bytes,
u128::to_le_bytes,
"unsigned integer",
[],
[],
[],
[]
);
define_type!(
A,
"A word-sized unsigned integer",
Usize,
usize,
mem::size_of::<usize>() * 8,
mem::size_of::<usize>(),
usize::from_be_bytes,
usize::to_be_bytes,
usize::from_le_bytes,
usize::to_le_bytes,
"unsigned integer",
[],
[],
[],
[]
);
define_type!(
An,
"A 16-bit signed integer",
I16,
i16,
16,
2,
i16::from_be_bytes,
i16::to_be_bytes,
i16::from_le_bytes,
i16::to_le_bytes,
"signed integer",
[i32, i64, i128, isize],
[i32, i64, i128, isize],
[I32, I64, I128, Isize],
[I32, I64, I128, Isize]
);
define_type!(
An,
"A 32-bit signed integer",
I32,
i32,
32,
4,
i32::from_be_bytes,
i32::to_be_bytes,
i32::from_le_bytes,
i32::to_le_bytes,
"signed integer",
[i64, i128],
[i64, i128],
[I64, I128],
[I64, I128]
);
define_type!(
An,
"A 64-bit signed integer",
I64,
i64,
64,
8,
i64::from_be_bytes,
i64::to_be_bytes,
i64::from_le_bytes,
i64::to_le_bytes,
"signed integer",
[i128],
[i128],
[I128],
[I128]
);
define_type!(
An,
"A 128-bit signed integer",
I128,
i128,
128,
16,
i128::from_be_bytes,
i128::to_be_bytes,
i128::from_le_bytes,
i128::to_le_bytes,
"signed integer",
[],
[],
[],
[]
);
define_type!(
An,
"A word-sized signed integer",
Isize,
isize,
mem::size_of::<isize>() * 8,
mem::size_of::<isize>(),
isize::from_be_bytes,
isize::to_be_bytes,
isize::from_le_bytes,
isize::to_le_bytes,
"signed integer",
[],
[],
[],
[]
);
macro_rules! define_float_conversion {
($ty:ty, $bits:ident, $bytes:expr, $mod:ident) => {
mod $mod {
use super::*;
define_float_conversion!($ty, $bits, $bytes, from_be_bytes, to_be_bytes);
define_float_conversion!($ty, $bits, $bytes, from_le_bytes, to_le_bytes);
}
};
($ty:ty, $bits:ident, $bytes:expr, $from:ident, $to:ident) => {
#[allow(clippy::transmute_int_to_float)]
pub(crate) const fn $from(bytes: [u8; $bytes]) -> $ty {
transmute!($bits::$from(bytes))
}
pub(crate) const fn $to(f: $ty) -> [u8; $bytes] {
#[allow(clippy::transmute_float_to_int)]
let bits: $bits = transmute!(f);
bits.$to()
}
};
}
define_float_conversion!(f32, u32, 4, f32_ext);
define_float_conversion!(f64, u64, 8, f64_ext);
define_type!(
An,
"A 32-bit floating point number",
F32,
f32,
32,
4,
f32_ext::from_be_bytes,
f32_ext::to_be_bytes,
f32_ext::from_le_bytes,
f32_ext::to_le_bytes,
"floating point number",
[f64],
[],
[F64],
[]
);
define_type!(
An,
"A 64-bit floating point number",
F64,
f64,
64,
8,
f64_ext::from_be_bytes,
f64_ext::to_be_bytes,
f64_ext::from_le_bytes,
f64_ext::to_le_bytes,
"floating point number",
[],
[],
[],
[]
);
macro_rules! module {
($name:ident, $trait:ident, $endianness_str:expr) => {
#[doc = $endianness_str]
pub mod $name {
use super::$trait;
module!(@ty U16, $trait, "16-bit unsigned integer", $endianness_str);
module!(@ty U32, $trait, "32-bit unsigned integer", $endianness_str);
module!(@ty U64, $trait, "64-bit unsigned integer", $endianness_str);
module!(@ty U128, $trait, "128-bit unsigned integer", $endianness_str);
module!(@ty I16, $trait, "16-bit signed integer", $endianness_str);
module!(@ty I32, $trait, "32-bit signed integer", $endianness_str);
module!(@ty I64, $trait, "64-bit signed integer", $endianness_str);
module!(@ty I128, $trait, "128-bit signed integer", $endianness_str);
module!(@ty F32, $trait, "32-bit floating point number", $endianness_str);
module!(@ty F64, $trait, "64-bit floating point number", $endianness_str);
}
};
(@ty $ty:ident, $trait:ident, $desc_str:expr, $endianness_str:expr) => {
#[doc = $desc_str]
#[doc = $endianness_str]
pub type $ty = crate::byteorder::$ty<$trait>;
};
}
module!(big_endian, BigEndian, "big-endian");
module!(little_endian, LittleEndian, "little-endian");
module!(network_endian, NetworkEndian, "network-endian");
module!(native_endian, NativeEndian, "native-endian");
#[cfg(any(test, kani))]
mod tests {
use super::*;
#[cfg(not(kani))]
mod compatibility {
pub(super) use rand::{
distributions::{Distribution, Standard},
rngs::SmallRng,
Rng, SeedableRng,
};
pub(crate) trait Arbitrary {}
impl<T> Arbitrary for T {}
}
#[cfg(kani)]
mod compatibility {
pub(crate) use kani::Arbitrary;
pub(crate) struct SmallRng;
impl SmallRng {
pub(crate) fn seed_from_u64(_state: u64) -> Self {
Self
}
}
pub(crate) trait Rng {
fn sample<T, D: Distribution<T>>(&mut self, _distr: D) -> T
where
T: Arbitrary,
{
kani::any()
}
}
impl Rng for SmallRng {}
pub(crate) trait Distribution<T> {}
impl<T, U> Distribution<T> for U {}
pub(crate) struct Standard;
}
use compatibility::*;
trait Native: Arbitrary + FromBytes + IntoBytes + Immutable + Copy + PartialEq + Debug {
const ZERO: Self;
const MAX_VALUE: Self;
type Distribution: Distribution<Self>;
const DIST: Self::Distribution;
fn rand<R: Rng>(rng: &mut R) -> Self {
rng.sample(Self::DIST)
}
#[cfg_attr(kani, allow(unused))]
fn checked_add(self, rhs: Self) -> Option<Self>;
#[cfg_attr(kani, allow(unused))]
fn checked_div(self, rhs: Self) -> Option<Self>;
#[cfg_attr(kani, allow(unused))]
fn checked_mul(self, rhs: Self) -> Option<Self>;
#[cfg_attr(kani, allow(unused))]
fn checked_rem(self, rhs: Self) -> Option<Self>;
#[cfg_attr(kani, allow(unused))]
fn checked_sub(self, rhs: Self) -> Option<Self>;
#[cfg_attr(kani, allow(unused))]
fn checked_shl(self, rhs: Self) -> Option<Self>;
#[cfg_attr(kani, allow(unused))]
fn checked_shr(self, rhs: Self) -> Option<Self>;
fn is_nan(self) -> bool;
fn assert_eq_or_nan(self, other: Self) {
let slf = (!self.is_nan()).then(|| self);
let other = (!other.is_nan()).then(|| other);
assert_eq!(slf, other);
}
}
trait ByteArray:
FromBytes + IntoBytes + Immutable + Copy + AsRef<[u8]> + AsMut<[u8]> + Debug + Default + Eq
{
fn invert(self) -> Self;
}
trait ByteOrderType:
FromBytes + IntoBytes + Unaligned + Copy + Eq + Debug + Hash + From<Self::Native>
{
type Native: Native;
type ByteArray: ByteArray;
const ZERO: Self;
fn new(native: Self::Native) -> Self;
fn get(self) -> Self::Native;
fn set(&mut self, native: Self::Native);
fn from_bytes(bytes: Self::ByteArray) -> Self;
fn into_bytes(self) -> Self::ByteArray;
fn assert_eq_or_nan(self, other: Self) {
let slf = (!self.get().is_nan()).then(|| self);
let other = (!other.get().is_nan()).then(|| other);
assert_eq!(slf, other);
}
}
trait ByteOrderTypeUnsigned: ByteOrderType {
const MAX_VALUE: Self;
}
macro_rules! impl_byte_array {
($bytes:expr) => {
impl ByteArray for [u8; $bytes] {
fn invert(mut self) -> [u8; $bytes] {
self.reverse();
self
}
}
};
}
impl_byte_array!(2);
impl_byte_array!(4);
impl_byte_array!(8);
impl_byte_array!(16);
macro_rules! impl_byte_order_type_unsigned {
($name:ident, unsigned) => {
impl<O: ByteOrder> ByteOrderTypeUnsigned for $name<O> {
const MAX_VALUE: $name<O> = $name::MAX_VALUE;
}
};
($name:ident, signed) => {};
}
macro_rules! impl_traits {
($name:ident, $native:ident, $sign:ident $(, @$float:ident)?) => {
impl Native for $native {
#[allow(trivial_numeric_casts, clippy::as_conversions)]
const ZERO: $native = 0 as $native;
const MAX_VALUE: $native = $native::MAX;
type Distribution = Standard;
const DIST: Standard = Standard;
impl_traits!(@float_dependent_methods $(@$float)?);
}
impl<O: ByteOrder> ByteOrderType for $name<O> {
type Native = $native;
type ByteArray = [u8; mem::size_of::<$native>()];
const ZERO: $name<O> = $name::ZERO;
fn new(native: $native) -> $name<O> {
$name::new(native)
}
fn get(self) -> $native {
$name::get(self)
}
fn set(&mut self, native: $native) {
$name::set(self, native)
}
fn from_bytes(bytes: [u8; mem::size_of::<$native>()]) -> $name<O> {
$name::from(bytes)
}
fn into_bytes(self) -> [u8; mem::size_of::<$native>()] {
<[u8; mem::size_of::<$native>()]>::from(self)
}
}
impl_byte_order_type_unsigned!($name, $sign);
};
(@float_dependent_methods) => {
fn checked_add(self, rhs: Self) -> Option<Self> { self.checked_add(rhs) }
fn checked_div(self, rhs: Self) -> Option<Self> { self.checked_div(rhs) }
fn checked_mul(self, rhs: Self) -> Option<Self> { self.checked_mul(rhs) }
fn checked_rem(self, rhs: Self) -> Option<Self> { self.checked_rem(rhs) }
fn checked_sub(self, rhs: Self) -> Option<Self> { self.checked_sub(rhs) }
fn checked_shl(self, rhs: Self) -> Option<Self> { self.checked_shl(rhs.try_into().unwrap_or(u32::MAX)) }
fn checked_shr(self, rhs: Self) -> Option<Self> { self.checked_shr(rhs.try_into().unwrap_or(u32::MAX)) }
fn is_nan(self) -> bool { false }
};
(@float_dependent_methods @float) => {
fn checked_add(self, rhs: Self) -> Option<Self> { Some(self + rhs) }
fn checked_div(self, rhs: Self) -> Option<Self> { Some(self / rhs) }
fn checked_mul(self, rhs: Self) -> Option<Self> { Some(self * rhs) }
fn checked_rem(self, rhs: Self) -> Option<Self> { Some(self % rhs) }
fn checked_sub(self, rhs: Self) -> Option<Self> { Some(self - rhs) }
fn checked_shl(self, _rhs: Self) -> Option<Self> { unimplemented!() }
fn checked_shr(self, _rhs: Self) -> Option<Self> { unimplemented!() }
fn is_nan(self) -> bool { self.is_nan() }
};
}
impl_traits!(U16, u16, unsigned);
impl_traits!(U32, u32, unsigned);
impl_traits!(U64, u64, unsigned);
impl_traits!(U128, u128, unsigned);
impl_traits!(Usize, usize, unsigned);
impl_traits!(I16, i16, signed);
impl_traits!(I32, i32, signed);
impl_traits!(I64, i64, signed);
impl_traits!(I128, i128, signed);
impl_traits!(Isize, isize, unsigned);
impl_traits!(F32, f32, signed, @float);
impl_traits!(F64, f64, signed, @float);
macro_rules! call_for_unsigned_types {
($fn:ident, $byteorder:ident) => {
$fn::<U16<$byteorder>>();
$fn::<U32<$byteorder>>();
$fn::<U64<$byteorder>>();
$fn::<U128<$byteorder>>();
$fn::<Usize<$byteorder>>();
};
}
macro_rules! call_for_signed_types {
($fn:ident, $byteorder:ident) => {
$fn::<I16<$byteorder>>();
$fn::<I32<$byteorder>>();
$fn::<I64<$byteorder>>();
$fn::<I128<$byteorder>>();
$fn::<Isize<$byteorder>>();
};
}
macro_rules! call_for_float_types {
($fn:ident, $byteorder:ident) => {
$fn::<F32<$byteorder>>();
$fn::<F64<$byteorder>>();
};
}
macro_rules! call_for_all_types {
($fn:ident, $byteorder:ident) => {
call_for_unsigned_types!($fn, $byteorder);
call_for_signed_types!($fn, $byteorder);
call_for_float_types!($fn, $byteorder);
};
}
#[cfg(target_endian = "big")]
type NonNativeEndian = LittleEndian;
#[cfg(target_endian = "little")]
type NonNativeEndian = BigEndian;
const RNG_SEED: u64 = 0x7A03CAE2F32B5B8F;
const RAND_ITERS: usize = if cfg!(any(miri, kani)) {
1
} else {
1024
};
#[test]
fn test_const_methods() {
use big_endian::*;
#[rustversion::since(1.61.0)]
const _U: U16 = U16::new(0);
#[rustversion::since(1.61.0)]
const _NATIVE: u16 = _U.get();
const _FROM_BYTES: U16 = U16::from_bytes([0, 1]);
const _BYTES: [u8; 2] = _FROM_BYTES.to_bytes();
}
#[cfg_attr(test, test)]
#[cfg_attr(kani, kani::proof)]
fn test_zero() {
fn test_zero<T: ByteOrderType>() {
assert_eq!(T::ZERO.get(), T::Native::ZERO);
}
call_for_all_types!(test_zero, NativeEndian);
call_for_all_types!(test_zero, NonNativeEndian);
}
#[cfg_attr(test, test)]
#[cfg_attr(kani, kani::proof)]
fn test_max_value() {
fn test_max_value<T: ByteOrderTypeUnsigned>() {
assert_eq!(T::MAX_VALUE.get(), T::Native::MAX_VALUE);
}
call_for_unsigned_types!(test_max_value, NativeEndian);
call_for_unsigned_types!(test_max_value, NonNativeEndian);
}
#[cfg_attr(test, test)]
#[cfg_attr(kani, kani::proof)]
fn test_endian() {
fn test<T: ByteOrderType>(invert: bool) {
let mut r = SmallRng::seed_from_u64(RNG_SEED);
for _ in 0..RAND_ITERS {
let native = T::Native::rand(&mut r);
let mut bytes = T::ByteArray::default();
bytes.as_mut_bytes().copy_from_slice(native.as_bytes());
if invert {
bytes = bytes.invert();
}
let mut from_native = T::new(native);
let from_bytes = T::from_bytes(bytes);
from_native.assert_eq_or_nan(from_bytes);
from_native.get().assert_eq_or_nan(native);
from_bytes.get().assert_eq_or_nan(native);
assert_eq!(from_native.into_bytes(), bytes);
assert_eq!(from_bytes.into_bytes(), bytes);
let updated = T::Native::rand(&mut r);
from_native.set(updated);
from_native.get().assert_eq_or_nan(updated);
}
}
fn test_native<T: ByteOrderType>() {
test::<T>(false);
}
fn test_non_native<T: ByteOrderType>() {
test::<T>(true);
}
call_for_all_types!(test_native, NativeEndian);
call_for_all_types!(test_non_native, NonNativeEndian);
}
#[test]
fn test_ops_impls() {
fn test<T, FTT, FTN, FNT, FNN, FNNChecked, FATT, FATN, FANT>(
op_t_t: FTT,
op_t_n: FTN,
op_n_t: FNT,
op_n_n: FNN,
op_n_n_checked: Option<FNNChecked>,
op_assign: Option<(FATT, FATN, FANT)>,
) where
T: ByteOrderType,
FTT: Fn(T, T) -> T,
FTN: Fn(T, T::Native) -> T,
FNT: Fn(T::Native, T) -> T,
FNN: Fn(T::Native, T::Native) -> T::Native,
FNNChecked: Fn(T::Native, T::Native) -> Option<T::Native>,
FATT: Fn(&mut T, T),
FATN: Fn(&mut T, T::Native),
FANT: Fn(&mut T::Native, T),
{
let mut r = SmallRng::seed_from_u64(RNG_SEED);
for _ in 0..RAND_ITERS {
let n0 = T::Native::rand(&mut r);
let n1 = T::Native::rand(&mut r);
let t0 = T::new(n0);
let t1 = T::new(n1);
if matches!(&op_n_n_checked, Some(checked) if checked(n0, n1).is_none()) {
continue;
}
let t_t_res = op_t_t(t0, t1);
let t_n_res = op_t_n(t0, n1);
let n_t_res = op_n_t(n0, t1);
let n_n_res = op_n_n(n0, n1);
let val_or_none = |t: T| (!T::Native::is_nan(t.get())).then(|| t.get());
let t_t_res = val_or_none(t_t_res);
let t_n_res = val_or_none(t_n_res);
let n_t_res = val_or_none(n_t_res);
let n_n_res = (!T::Native::is_nan(n_n_res)).then(|| n_n_res);
assert_eq!(t_t_res, n_n_res);
assert_eq!(t_n_res, n_n_res);
assert_eq!(n_t_res, n_n_res);
if let Some((op_assign_t_t, op_assign_t_n, op_assign_n_t)) = &op_assign {
let mut t_t_res = t0;
op_assign_t_t(&mut t_t_res, t1);
let mut t_n_res = t0;
op_assign_t_n(&mut t_n_res, n1);
let mut n_t_res = n0;
op_assign_n_t(&mut n_t_res, t1);
let t_t_res = val_or_none(t_t_res);
let t_n_res = val_or_none(t_n_res);
let n_t_res = (!T::Native::is_nan(n_t_res)).then(|| n_t_res);
assert_eq!(t_t_res, n_n_res);
assert_eq!(t_n_res, n_n_res);
assert_eq!(n_t_res, n_n_res);
}
}
}
macro_rules! test {
(
@binary
$trait:ident,
$method:ident $([$checked_method:ident])?,
$trait_assign:ident,
$method_assign:ident,
$($call_for_macros:ident),*
) => {{
fn t<T>()
where
T: ByteOrderType,
T: core::ops::$trait<T, Output = T>,
T: core::ops::$trait<T::Native, Output = T>,
T::Native: core::ops::$trait<T, Output = T>,
T::Native: core::ops::$trait<T::Native, Output = T::Native>,
T: core::ops::$trait_assign<T>,
T: core::ops::$trait_assign<T::Native>,
T::Native: core::ops::$trait_assign<T>,
T::Native: core::ops::$trait_assign<T::Native>,
{
test::<T, _, _, _, _, _, _, _, _>(
core::ops::$trait::$method,
core::ops::$trait::$method,
core::ops::$trait::$method,
core::ops::$trait::$method,
{
#[allow(unused_mut, unused_assignments)]
let mut op_native_checked = None::<fn(T::Native, T::Native) -> Option<T::Native>>;
$(
op_native_checked = Some(T::Native::$checked_method);
)?
op_native_checked
},
Some((
<T as core::ops::$trait_assign<T>>::$method_assign,
<T as core::ops::$trait_assign::<T::Native>>::$method_assign,
<T::Native as core::ops::$trait_assign::<T>>::$method_assign
)),
);
}
$(
$call_for_macros!(t, NativeEndian);
$call_for_macros!(t, NonNativeEndian);
)*
}};
(
@unary
$trait:ident,
$method:ident,
$($call_for_macros:ident),*
) => {{
fn t<T>()
where
T: ByteOrderType,
T: core::ops::$trait<Output = T>,
T::Native: core::ops::$trait<Output = T::Native>,
{
test::<T, _, _, _, _, _, _, _, _>(
|slf, _rhs| core::ops::$trait::$method(slf),
|slf, _rhs| core::ops::$trait::$method(slf),
|slf, _rhs| core::ops::$trait::$method(slf).into(),
|slf, _rhs| core::ops::$trait::$method(slf),
None::<fn(T::Native, T::Native) -> Option<T::Native>>,
None::<(fn(&mut T, T), fn(&mut T, T::Native), fn(&mut T::Native, T))>,
);
}
$(
$call_for_macros!(t, NativeEndian);
$call_for_macros!(t, NonNativeEndian);
)*
}};
}
test!(@binary Add, add[checked_add], AddAssign, add_assign, call_for_all_types);
test!(@binary Div, div[checked_div], DivAssign, div_assign, call_for_all_types);
test!(@binary Mul, mul[checked_mul], MulAssign, mul_assign, call_for_all_types);
test!(@binary Rem, rem[checked_rem], RemAssign, rem_assign, call_for_all_types);
test!(@binary Sub, sub[checked_sub], SubAssign, sub_assign, call_for_all_types);
test!(@binary BitAnd, bitand, BitAndAssign, bitand_assign, call_for_unsigned_types, call_for_signed_types);
test!(@binary BitOr, bitor, BitOrAssign, bitor_assign, call_for_unsigned_types, call_for_signed_types);
test!(@binary BitXor, bitxor, BitXorAssign, bitxor_assign, call_for_unsigned_types, call_for_signed_types);
test!(@binary Shl, shl[checked_shl], ShlAssign, shl_assign, call_for_unsigned_types, call_for_signed_types);
test!(@binary Shr, shr[checked_shr], ShrAssign, shr_assign, call_for_unsigned_types, call_for_signed_types);
test!(@unary Not, not, call_for_signed_types, call_for_unsigned_types);
test!(@unary Neg, neg, call_for_signed_types, call_for_float_types);
}
#[test]
fn test_debug_impl() {
let val = U16::<LE>::new(10);
assert_eq!(format!("{:?}", val), "U16(10)");
assert_eq!(format!("{:03?}", val), "U16(010)");
assert_eq!(format!("{:x?}", val), "U16(a)");
}
}