zerocopy/ref.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
// Copyright 2024 The Fuchsia Authors
//
// Licensed under the 2-Clause BSD License <LICENSE-BSD or
// https://opensource.org/license/bsd-2-clause>, Apache License, Version 2.0
// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
// This file may not be copied, modified, or distributed except according to
// those terms.
use super::*;
mod def {
use core::marker::PhantomData;
use crate::{
ByteSlice, ByteSliceMut, CloneableByteSlice, CopyableByteSlice, IntoByteSlice,
IntoByteSliceMut,
};
/// A typed reference derived from a byte slice.
///
/// A `Ref<B, T>` is a reference to a `T` which is stored in a byte slice, `B`.
/// Unlike a native reference (`&T` or `&mut T`), `Ref<B, T>` has the same
/// mutability as the byte slice it was constructed from (`B`).
///
/// # Examples
///
/// `Ref` can be used to treat a sequence of bytes as a structured type, and
/// to read and write the fields of that type as if the byte slice reference
/// were simply a reference to that type.
///
/// ```rust
/// use zerocopy::*;
/// # use zerocopy_derive::*;
///
/// #[derive(FromBytes, IntoBytes, KnownLayout, Immutable, Unaligned)]
/// #[repr(C)]
/// struct UdpHeader {
/// src_port: [u8; 2],
/// dst_port: [u8; 2],
/// length: [u8; 2],
/// checksum: [u8; 2],
/// }
///
/// #[derive(FromBytes, IntoBytes, KnownLayout, Immutable, Unaligned)]
/// #[repr(C, packed)]
/// struct UdpPacket {
/// header: UdpHeader,
/// body: [u8],
/// }
///
/// impl UdpPacket {
/// pub fn parse<B: ByteSlice>(bytes: B) -> Option<Ref<B, UdpPacket>> {
/// Ref::from_bytes(bytes).ok()
/// }
/// }
/// ```
pub struct Ref<B, T: ?Sized>(
// INVARIANTS: The referent (via `.deref`, `.deref_mut`, `.into`) byte
// slice is aligned to `T`'s alignment and its size corresponds to a
// valid size for `T`.
B,
PhantomData<T>,
);
impl<B, T: ?Sized> Ref<B, T> {
/// Constructs a new `Ref`.
///
/// # Safety
///
/// `bytes` dereferences (via [`deref`], [`deref_mut`], and [`into`]) to
/// a byte slice which is aligned to `T`'s alignment and whose size is a
/// valid size for `T`.
///
/// [`deref`]: core::ops::Deref::deref
/// [`deref_mut`]: core::ops::DerefMut::deref_mut
/// [`into`]: core::convert::Into::into
pub(crate) unsafe fn new_unchecked(bytes: B) -> Ref<B, T> {
// INVARIANTS: The caller has promised that `bytes`'s referent is
// validly-aligned and has a valid size.
Ref(bytes, PhantomData)
}
}
impl<B: ByteSlice, T: ?Sized> Ref<B, T> {
/// Access the byte slice as a [`ByteSlice`].
///
/// # Safety
///
/// The caller promises not to call methods on the returned
/// [`ByteSlice`] other than `ByteSlice` methods (for example, via
/// `Any::downcast_ref`).
///
/// `as_byte_slice` promises to return a `ByteSlice` whose referent is
/// validly-aligned for `T` and has a valid size for `T`.
pub(crate) unsafe fn as_byte_slice(&self) -> &impl ByteSlice {
// INVARIANTS: The caller promises not to call methods other than
// those on `ByteSlice`. Since `B: ByteSlice`, dereference stability
// guarantees that calling `ByteSlice` methods will not change the
// address or length of `self.0`'s referent.
//
// SAFETY: By invariant on `self.0`, the alignment and size
// post-conditions are upheld.
&self.0
}
}
impl<B: ByteSliceMut, T: ?Sized> Ref<B, T> {
/// Access the byte slice as a [`ByteSliceMut`].
///
/// # Safety
///
/// The caller promises not to call methods on the returned
/// [`ByteSliceMut`] other than `ByteSliceMut` methods (for example, via
/// `Any::downcast_mut`).
///
/// `as_byte_slice` promises to return a `ByteSlice` whose referent is
/// validly-aligned for `T` and has a valid size for `T`.
pub(crate) unsafe fn as_byte_slice_mut(&mut self) -> &mut impl ByteSliceMut {
// INVARIANTS: The caller promises not to call methods other than
// those on `ByteSliceMut`. Since `B: ByteSlice`, dereference
// stability guarantees that calling `ByteSlice` methods will not
// change the address or length of `self.0`'s referent.
//
// SAFETY: By invariant on `self.0`, the alignment and size
// post-conditions are upheld.
&mut self.0
}
}
impl<'a, B: IntoByteSlice<'a>, T: ?Sized> Ref<B, T> {
/// Access the byte slice as an [`IntoByteSlice`].
///
/// # Safety
///
/// The caller promises not to call methods on the returned
/// [`IntoByteSlice`] other than `IntoByteSlice` methods (for example,
/// via `Any::downcast_ref`).
///
/// `as_byte_slice` promises to return a `ByteSlice` whose referent is
/// validly-aligned for `T` and has a valid size for `T`.
pub(crate) unsafe fn into_byte_slice(self) -> impl IntoByteSlice<'a> {
// INVARIANTS: The caller promises not to call methods other than
// those on `IntoByteSlice`. Since `B: ByteSlice`, dereference
// stability guarantees that calling `ByteSlice` methods will not
// change the address or length of `self.0`'s referent.
//
// SAFETY: By invariant on `self.0`, the alignment and size
// post-conditions are upheld.
self.0
}
}
impl<'a, B: IntoByteSliceMut<'a>, T: ?Sized> Ref<B, T> {
/// Access the byte slice as an [`IntoByteSliceMut`].
///
/// # Safety
///
/// The caller promises not to call methods on the returned
/// [`IntoByteSliceMut`] other than `IntoByteSliceMut` methods (for
/// example, via `Any::downcast_mut`).
///
/// `as_byte_slice` promises to return a `ByteSlice` whose referent is
/// validly-aligned for `T` and has a valid size for `T`.
pub(crate) unsafe fn into_byte_slice_mut(self) -> impl IntoByteSliceMut<'a> {
// INVARIANTS: The caller promises not to call methods other than
// those on `IntoByteSliceMut`. Since `B: ByteSlice`, dereference
// stability guarantees that calling `ByteSlice` methods will not
// change the address or length of `self.0`'s referent.
//
// SAFETY: By invariant on `self.0`, the alignment and size
// post-conditions are upheld.
self.0
}
}
impl<B: CloneableByteSlice + Clone, T: ?Sized> Clone for Ref<B, T> {
#[inline]
fn clone(&self) -> Ref<B, T> {
// INVARIANTS: Since `B: CloneableByteSlice`, `self.0.clone()` has
// the same address and length as `self.0`. Since `self.0` upholds
// the field invariants, so does `self.0.clone()`.
Ref(self.0.clone(), PhantomData)
}
}
// INVARIANTS: Since `B: CopyableByteSlice`, the copied `Ref`'s `.0` has the
// same address and length as the original `Ref`'s `.0`. Since the original
// upholds the field invariants, so does the copy.
impl<B: CopyableByteSlice + Copy, T: ?Sized> Copy for Ref<B, T> {}
}
#[allow(unreachable_pub)] // This is a false positive on our MSRV toolchain.
pub use def::Ref;
impl<B, T> Ref<B, T>
where
B: ByteSlice,
{
#[must_use = "has no side effects"]
pub(crate) fn sized_from(bytes: B) -> Result<Ref<B, T>, CastError<B, T>> {
if bytes.len() != mem::size_of::<T>() {
return Err(SizeError::new(bytes).into());
}
if let Err(err) = util::validate_aligned_to::<_, T>(bytes.deref()) {
return Err(err.with_src(bytes).into());
}
// SAFETY: We just validated size and alignment.
Ok(unsafe { Ref::new_unchecked(bytes) })
}
}
impl<B, T> Ref<B, T>
where
B: SplitByteSlice,
{
#[must_use = "has no side effects"]
pub(crate) fn sized_from_prefix(bytes: B) -> Result<(Ref<B, T>, B), CastError<B, T>> {
if bytes.len() < mem::size_of::<T>() {
return Err(SizeError::new(bytes).into());
}
if let Err(err) = util::validate_aligned_to::<_, T>(bytes.deref()) {
return Err(err.with_src(bytes).into());
}
let (bytes, suffix) =
bytes.split_at(mem::size_of::<T>()).map_err(|b| SizeError::new(b).into())?;
// SAFETY: We just validated alignment and that `bytes` is at least as
// large as `T`. `bytes.split_at(mem::size_of::<T>())?` ensures that the
// new `bytes` is exactly the size of `T`. By safety postcondition on
// `SplitByteSlice::split_at` we can rely on `split_at` to produce the
// correct `bytes` and `suffix`.
let r = unsafe { Ref::new_unchecked(bytes) };
Ok((r, suffix))
}
#[must_use = "has no side effects"]
pub(crate) fn sized_from_suffix(bytes: B) -> Result<(B, Ref<B, T>), CastError<B, T>> {
let bytes_len = bytes.len();
let split_at = if let Some(split_at) = bytes_len.checked_sub(mem::size_of::<T>()) {
split_at
} else {
return Err(SizeError::new(bytes).into());
};
let (prefix, bytes) = bytes.split_at(split_at).map_err(|b| SizeError::new(b).into())?;
if let Err(err) = util::validate_aligned_to::<_, T>(bytes.deref()) {
return Err(err.with_src(bytes).into());
}
// SAFETY: Since `split_at` is defined as `bytes_len - size_of::<T>()`,
// the `bytes` which results from `let (prefix, bytes) =
// bytes.split_at(split_at)?` has length `size_of::<T>()`. After
// constructing `bytes`, we validate that it has the proper alignment.
// By safety postcondition on `SplitByteSlice::split_at` we can rely on
// `split_at` to produce the correct `prefix` and `bytes`.
let r = unsafe { Ref::new_unchecked(bytes) };
Ok((prefix, r))
}
}
impl<B, T> Ref<B, T>
where
B: ByteSlice,
T: KnownLayout + Immutable + ?Sized,
{
/// Constructs a `Ref` from a byte slice.
///
/// If the length of `source` is not a [valid size of `T`][valid-size], or
/// if `source` is not appropriately aligned for `T`, this returns `Err`. If
/// [`T: Unaligned`][t-unaligned], you can [infallibly discard the alignment
/// error][size-error-from].
///
/// `T` may be a sized type, a slice, or a [slice DST][slice-dst].
///
/// [valid-size]: crate::KnownLayout#what-is-a-valid-size
/// [t-unaligned]: Unaligned
/// [size-error-from]: error/struct.SizeError.html#method.from-1
/// [slice-dst]: KnownLayout#dynamically-sized-types
///
/// # Compile-Time Assertions
///
/// This method cannot yet be used on unsized types whose dynamically-sized
/// component is zero-sized. Attempting to use this method on such types
/// results in a compile-time assertion error; e.g.:
///
/// ```compile_fail,E0080
/// use zerocopy::*;
/// # use zerocopy_derive::*;
///
/// #[derive(Immutable, KnownLayout)]
/// #[repr(C)]
/// struct ZSTy {
/// leading_sized: u16,
/// trailing_dst: [()],
/// }
///
/// let _ = Ref::<_, ZSTy>::from_bytes(&b"UU"[..]); // ⚠ Compile Error!
/// ```
#[must_use = "has no side effects"]
#[inline]
pub fn from_bytes(source: B) -> Result<Ref<B, T>, CastError<B, T>> {
static_assert_dst_is_not_zst!(T);
if let Err(e) =
Ptr::from_ref(source.deref()).try_cast_into_no_leftover::<T, BecauseImmutable>(None)
{
return Err(e.with_src(()).with_src(source));
}
// SAFETY: `try_cast_into_no_leftover` validates size and alignment.
Ok(unsafe { Ref::new_unchecked(source) })
}
}
impl<B, T> Ref<B, T>
where
B: SplitByteSlice,
T: KnownLayout + Immutable + ?Sized,
{
/// Constructs a `Ref` from the prefix of a byte slice.
///
/// This method computes the [largest possible size of `T`][valid-size] that
/// can fit in the leading bytes of `source`, then attempts to return both a
/// `Ref` to those bytes, and a reference to the remaining bytes. If there
/// are insufficient bytes, or if `source` is not appropriately aligned,
/// this returns `Err`. If [`T: Unaligned`][t-unaligned], you can
/// [infallibly discard the alignment error][size-error-from].
///
/// `T` may be a sized type, a slice, or a [slice DST][slice-dst].
///
/// [valid-size]: crate::KnownLayout#what-is-a-valid-size
/// [t-unaligned]: Unaligned
/// [size-error-from]: error/struct.SizeError.html#method.from-1
/// [slice-dst]: KnownLayout#dynamically-sized-types
///
/// # Compile-Time Assertions
///
/// This method cannot yet be used on unsized types whose dynamically-sized
/// component is zero-sized. Attempting to use this method on such types
/// results in a compile-time assertion error; e.g.:
///
/// ```compile_fail,E0080
/// use zerocopy::*;
/// # use zerocopy_derive::*;
///
/// #[derive(Immutable, KnownLayout)]
/// #[repr(C)]
/// struct ZSTy {
/// leading_sized: u16,
/// trailing_dst: [()],
/// }
///
/// let _ = Ref::<_, ZSTy>::from_prefix(&b"UU"[..]); // ⚠ Compile Error!
/// ```
#[must_use = "has no side effects"]
#[inline]
pub fn from_prefix(source: B) -> Result<(Ref<B, T>, B), CastError<B, T>> {
static_assert_dst_is_not_zst!(T);
let remainder = match Ptr::from_ref(source.deref())
.try_cast_into::<T, BecauseImmutable>(CastType::Prefix, None)
{
Ok((_, remainder)) => remainder,
Err(e) => {
return Err(e.with_src(()).with_src(source));
}
};
// SAFETY: `remainder` is constructed as a subset of `source`, and so it
// cannot have a larger size than `source`. Both of their `len` methods
// measure bytes (`source` deref's to `[u8]`, and `remainder` is a
// `Ptr<[u8]>`), so `source.len() >= remainder.len()`. Thus, this cannot
// underflow.
#[allow(unstable_name_collisions, clippy::incompatible_msrv)]
let split_at = unsafe { source.len().unchecked_sub(remainder.len()) };
let (bytes, suffix) = source.split_at(split_at).map_err(|b| SizeError::new(b).into())?;
// SAFETY: `try_cast_into` validates size and alignment, and returns a
// `split_at` that indicates how many bytes of `source` correspond to a
// valid `T`. By safety postcondition on `SplitByteSlice::split_at` we
// can rely on `split_at` to produce the correct `source` and `suffix`.
let r = unsafe { Ref::new_unchecked(bytes) };
Ok((r, suffix))
}
/// Constructs a `Ref` from the suffix of a byte slice.
///
/// This method computes the [largest possible size of `T`][valid-size] that
/// can fit in the trailing bytes of `source`, then attempts to return both
/// a `Ref` to those bytes, and a reference to the preceding bytes. If there
/// are insufficient bytes, or if that suffix of `source` is not
/// appropriately aligned, this returns `Err`. If [`T:
/// Unaligned`][t-unaligned], you can [infallibly discard the alignment
/// error][size-error-from].
///
/// `T` may be a sized type, a slice, or a [slice DST][slice-dst].
///
/// [valid-size]: crate::KnownLayout#what-is-a-valid-size
/// [t-unaligned]: Unaligned
/// [size-error-from]: error/struct.SizeError.html#method.from-1
/// [slice-dst]: KnownLayout#dynamically-sized-types
///
/// # Compile-Time Assertions
///
/// This method cannot yet be used on unsized types whose dynamically-sized
/// component is zero-sized. Attempting to use this method on such types
/// results in a compile-time assertion error; e.g.:
///
/// ```compile_fail,E0080
/// use zerocopy::*;
/// # use zerocopy_derive::*;
///
/// #[derive(Immutable, KnownLayout)]
/// #[repr(C)]
/// struct ZSTy {
/// leading_sized: u16,
/// trailing_dst: [()],
/// }
///
/// let _ = Ref::<_, ZSTy>::from_suffix(&b"UU"[..]); // ⚠ Compile Error!
/// ```
#[must_use = "has no side effects"]
#[inline]
pub fn from_suffix(source: B) -> Result<(B, Ref<B, T>), CastError<B, T>> {
static_assert_dst_is_not_zst!(T);
let remainder = match Ptr::from_ref(source.deref())
.try_cast_into::<T, BecauseImmutable>(CastType::Suffix, None)
{
Ok((_, remainder)) => remainder,
Err(e) => {
let e = e.with_src(());
return Err(e.with_src(source));
}
};
let split_at = remainder.len();
let (prefix, bytes) = source.split_at(split_at).map_err(|b| SizeError::new(b).into())?;
// SAFETY: `try_cast_into` validates size and alignment, and returns a
// `split_at` that indicates how many bytes of `source` correspond to a
// valid `T`. By safety postcondition on `SplitByteSlice::split_at` we
// can rely on `split_at` to produce the correct `prefix` and `bytes`.
let r = unsafe { Ref::new_unchecked(bytes) };
Ok((prefix, r))
}
}
impl<B, T> Ref<B, T>
where
B: ByteSlice,
T: KnownLayout<PointerMetadata = usize> + Immutable + ?Sized,
{
/// Constructs a `Ref` from the given bytes with DST length equal to `count`
/// without copying.
///
/// This method attempts to return a `Ref` to the prefix of `source`
/// interpreted as a `T` with `count` trailing elements, and a reference to
/// the remaining bytes. If the length of `source` is not equal to the size
/// of `Self` with `count` elements, or if `source` is not appropriately
/// aligned, this returns `Err`. If [`T: Unaligned`][t-unaligned], you can
/// [infallibly discard the alignment error][size-error-from].
///
/// [t-unaligned]: Unaligned
/// [size-error-from]: error/struct.SizeError.html#method.from-1
///
/// # Compile-Time Assertions
///
/// This method cannot yet be used on unsized types whose dynamically-sized
/// component is zero-sized. Attempting to use this method on such types
/// results in a compile-time assertion error; e.g.:
///
/// ```compile_fail,E0080
/// use zerocopy::*;
/// # use zerocopy_derive::*;
///
/// #[derive(Immutable, KnownLayout)]
/// #[repr(C)]
/// struct ZSTy {
/// leading_sized: u16,
/// trailing_dst: [()],
/// }
///
/// let _ = Ref::<_, ZSTy>::from_bytes_with_elems(&b"UU"[..], 42); // ⚠ Compile Error!
/// ```
#[inline]
pub fn from_bytes_with_elems(source: B, count: usize) -> Result<Ref<B, T>, CastError<B, T>> {
static_assert_dst_is_not_zst!(T);
let expected_len = match count.size_for_metadata(T::LAYOUT) {
Some(len) => len,
None => return Err(SizeError::new(source).into()),
};
if source.len() != expected_len {
return Err(SizeError::new(source).into());
}
Self::from_bytes(source)
}
}
impl<B, T> Ref<B, T>
where
B: SplitByteSlice,
T: KnownLayout<PointerMetadata = usize> + Immutable + ?Sized,
{
/// Constructs a `Ref` from the prefix of the given bytes with DST
/// length equal to `count` without copying.
///
/// This method attempts to return a `Ref` to the prefix of `source`
/// interpreted as a `T` with `count` trailing elements, and a reference to
/// the remaining bytes. If there are insufficient bytes, or if `source` is
/// not appropriately aligned, this returns `Err`. If [`T:
/// Unaligned`][t-unaligned], you can [infallibly discard the alignment
/// error][size-error-from].
///
/// [t-unaligned]: Unaligned
/// [size-error-from]: error/struct.SizeError.html#method.from-1
///
/// # Compile-Time Assertions
///
/// This method cannot yet be used on unsized types whose dynamically-sized
/// component is zero-sized. Attempting to use this method on such types
/// results in a compile-time assertion error; e.g.:
///
/// ```compile_fail,E0080
/// use zerocopy::*;
/// # use zerocopy_derive::*;
///
/// #[derive(Immutable, KnownLayout)]
/// #[repr(C)]
/// struct ZSTy {
/// leading_sized: u16,
/// trailing_dst: [()],
/// }
///
/// let _ = Ref::<_, ZSTy>::from_prefix_with_elems(&b"UU"[..], 42); // ⚠ Compile Error!
/// ```
#[inline]
pub fn from_prefix_with_elems(
source: B,
count: usize,
) -> Result<(Ref<B, T>, B), CastError<B, T>> {
static_assert_dst_is_not_zst!(T);
let expected_len = match count.size_for_metadata(T::LAYOUT) {
Some(len) => len,
None => return Err(SizeError::new(source).into()),
};
let (prefix, bytes) = source.split_at(expected_len).map_err(SizeError::new)?;
Self::from_bytes(prefix).map(move |l| (l, bytes))
}
/// Constructs a `Ref` from the suffix of the given bytes with DST length
/// equal to `count` without copying.
///
/// This method attempts to return a `Ref` to the suffix of `source`
/// interpreted as a `T` with `count` trailing elements, and a reference to
/// the preceding bytes. If there are insufficient bytes, or if that suffix
/// of `source` is not appropriately aligned, this returns `Err`. If [`T:
/// Unaligned`][t-unaligned], you can [infallibly discard the alignment
/// error][size-error-from].
///
/// [t-unaligned]: Unaligned
/// [size-error-from]: error/struct.SizeError.html#method.from-1
///
/// # Compile-Time Assertions
///
/// This method cannot yet be used on unsized types whose dynamically-sized
/// component is zero-sized. Attempting to use this method on such types
/// results in a compile-time assertion error; e.g.:
///
/// ```compile_fail,E0080
/// use zerocopy::*;
/// # use zerocopy_derive::*;
///
/// #[derive(Immutable, KnownLayout)]
/// #[repr(C)]
/// struct ZSTy {
/// leading_sized: u16,
/// trailing_dst: [()],
/// }
///
/// let _ = Ref::<_, ZSTy>::from_suffix_with_elems(&b"UU"[..], 42); // ⚠ Compile Error!
/// ```
#[inline]
pub fn from_suffix_with_elems(
source: B,
count: usize,
) -> Result<(B, Ref<B, T>), CastError<B, T>> {
static_assert_dst_is_not_zst!(T);
let expected_len = match count.size_for_metadata(T::LAYOUT) {
Some(len) => len,
None => return Err(SizeError::new(source).into()),
};
let split_at = if let Some(split_at) = source.len().checked_sub(expected_len) {
split_at
} else {
return Err(SizeError::new(source).into());
};
// SAFETY: The preceeding `source.len().checked_sub(expected_len)`
// guarantees that `split_at` is in-bounds.
let (bytes, suffix) = unsafe { source.split_at_unchecked(split_at) };
Self::from_bytes(suffix).map(move |l| (bytes, l))
}
}
impl<'a, B, T> Ref<B, T>
where
B: 'a + IntoByteSlice<'a>,
T: FromBytes + KnownLayout + Immutable + ?Sized,
{
/// Converts this `Ref` into a reference.
///
/// `into_ref` consumes the `Ref`, and returns a reference to `T`.
///
/// Note: this is an associated function, which means that you have to call
/// it as `Ref::into_ref(r)` instead of `r.into_ref()`. This is so that
/// there is no conflict with a method on the inner type.
#[must_use = "has no side effects"]
#[inline(always)]
pub fn into_ref(r: Self) -> &'a T {
// Presumably unreachable, since we've guarded each constructor of `Ref`.
static_assert_dst_is_not_zst!(T);
// SAFETY: We don't call any methods on `b` other than those provided by
// `IntoByteSlice`.
let b = unsafe { r.into_byte_slice() };
// PANICS: By post-condition on `into_byte_slice`, `b`'s size and
// alignment are valid for `T`. By post-condition, `b.into_byte_slice()`
// produces a byte slice with identical address and length to that
// produced by `b.deref()`.
let ptr = Ptr::from_ref(b.into_byte_slice())
.try_cast_into_no_leftover::<T, BecauseImmutable>(None)
.expect("zerocopy internal error: into_ref should be infallible");
let ptr = ptr.bikeshed_recall_valid();
ptr.as_ref()
}
}
impl<'a, B, T> Ref<B, T>
where
B: 'a + IntoByteSliceMut<'a>,
T: FromBytes + IntoBytes + KnownLayout + ?Sized,
{
/// Converts this `Ref` into a mutable reference.
///
/// `into_mut` consumes the `Ref`, and returns a mutable reference to `T`.
///
/// Note: this is an associated function, which means that you have to call
/// it as `Ref::into_mut(r)` instead of `r.into_mut()`. This is so that
/// there is no conflict with a method on the inner type.
#[must_use = "has no side effects"]
#[inline(always)]
pub fn into_mut(r: Self) -> &'a mut T {
// Presumably unreachable, since we've guarded each constructor of `Ref`.
static_assert_dst_is_not_zst!(T);
// SAFETY: We don't call any methods on `b` other than those provided by
// `IntoByteSliceMut`.
let b = unsafe { r.into_byte_slice_mut() };
// PANICS: By post-condition on `into_byte_slice_mut`, `b`'s size and
// alignment are valid for `T`. By post-condition,
// `b.into_byte_slice_mut()` produces a byte slice with identical
// address and length to that produced by `b.deref_mut()`.
let ptr = Ptr::from_mut(b.into_byte_slice_mut())
.try_cast_into_no_leftover::<T, BecauseExclusive>(None)
.expect("zerocopy internal error: into_ref should be infallible");
let ptr = ptr.bikeshed_recall_valid();
ptr.as_mut()
}
}
impl<B, T> Ref<B, T>
where
B: ByteSlice,
T: ?Sized,
{
/// Gets the underlying bytes.
///
/// Note: this is an associated function, which means that you have to call
/// it as `Ref::bytes(r)` instead of `r.bytes()`. This is so that there is
/// no conflict with a method on the inner type.
#[inline]
pub fn bytes(r: &Self) -> &[u8] {
// SAFETY: We don't call any methods on `b` other than those provided by
// `ByteSlice`.
unsafe { r.as_byte_slice().deref() }
}
}
impl<B, T> Ref<B, T>
where
B: ByteSliceMut,
T: ?Sized,
{
/// Gets the underlying bytes mutably.
///
/// Note: this is an associated function, which means that you have to call
/// it as `Ref::bytes_mut(r)` instead of `r.bytes_mut()`. This is so that
/// there is no conflict with a method on the inner type.
#[inline]
pub fn bytes_mut(r: &mut Self) -> &mut [u8] {
// SAFETY: We don't call any methods on `b` other than those provided by
// `ByteSliceMut`.
unsafe { r.as_byte_slice_mut().deref_mut() }
}
}
impl<B, T> Ref<B, T>
where
B: ByteSlice,
T: FromBytes,
{
/// Reads a copy of `T`.
///
/// Note: this is an associated function, which means that you have to call
/// it as `Ref::read(r)` instead of `r.read()`. This is so that there is no
/// conflict with a method on the inner type.
#[must_use = "has no side effects"]
#[inline]
pub fn read(r: &Self) -> T {
// SAFETY: We don't call any methods on `b` other than those provided by
// `ByteSlice`.
let b = unsafe { r.as_byte_slice() };
// SAFETY: By postcondition on `as_byte_slice`, we know that `b` is a
// valid size and ailgnment for `T`. By safety invariant on `ByteSlice`,
// we know that this is preserved via `.deref()`. Because `T:
// FromBytes`, it is sound to interpret these bytes as a `T`.
unsafe { ptr::read(b.deref().as_ptr().cast::<T>()) }
}
}
impl<B, T> Ref<B, T>
where
B: ByteSliceMut,
T: IntoBytes,
{
/// Writes the bytes of `t` and then forgets `t`.
///
/// Note: this is an associated function, which means that you have to call
/// it as `Ref::write(r, t)` instead of `r.write(t)`. This is so that there
/// is no conflict with a method on the inner type.
#[inline]
pub fn write(r: &mut Self, t: T) {
// SAFETY: We don't call any methods on `b` other than those provided by
// `ByteSliceMut`.
let b = unsafe { r.as_byte_slice_mut() };
// SAFETY: By postcondition on `as_byte_slice_mut`, we know that `b` is
// a valid size and ailgnment for `T`. By safety invariant on
// `ByteSlice`, we know that this is preserved via `.deref()`. Writing
// `t` to the buffer will allow all of the bytes of `t` to be accessed
// as a `[u8]`, but because `T: IntoBytes`, we know that this is sound.
unsafe { ptr::write(b.deref_mut().as_mut_ptr().cast::<T>(), t) }
}
}
impl<B, T> Deref for Ref<B, T>
where
B: ByteSlice,
T: FromBytes + KnownLayout + Immutable + ?Sized,
{
type Target = T;
#[inline]
fn deref(&self) -> &T {
// Presumably unreachable, since we've guarded each constructor of `Ref`.
static_assert_dst_is_not_zst!(T);
// SAFETY: We don't call any methods on `b` other than those provided by
// `ByteSlice`.
let b = unsafe { self.as_byte_slice() };
// PANICS: By postcondition on `as_byte_slice`, `b`'s size and alignment
// are valid for `T`, and by invariant on `ByteSlice`, these are
// preserved through `.deref()`, so this `unwrap` will not panic.
let ptr = Ptr::from_ref(b.deref())
.try_cast_into_no_leftover::<T, BecauseImmutable>(None)
.expect("zerocopy internal error: Deref::deref should be infallible");
let ptr = ptr.bikeshed_recall_valid();
ptr.as_ref()
}
}
impl<B, T> DerefMut for Ref<B, T>
where
B: ByteSliceMut,
// TODO(#251): We can't remove `Immutable` here because it's required by
// the impl of `Deref`, which is a super-trait of `DerefMut`. Maybe we can
// add a separate inherent method for this?
T: FromBytes + IntoBytes + KnownLayout + Immutable + ?Sized,
{
#[inline]
fn deref_mut(&mut self) -> &mut T {
// Presumably unreachable, since we've guarded each constructor of `Ref`.
static_assert_dst_is_not_zst!(T);
// SAFETY: We don't call any methods on `b` other than those provided by
// `ByteSliceMut`.
let b = unsafe { self.as_byte_slice_mut() };
// PANICS: By postcondition on `as_byte_slice_mut`, `b`'s size and
// alignment are valid for `T`, and by invariant on `ByteSlice`, these
// are preserved through `.deref_mut()`, so this `unwrap` will not
// panic.
let ptr = Ptr::from_mut(b.deref_mut())
.try_cast_into_no_leftover::<T, BecauseExclusive>(None)
.expect("zerocopy internal error: DerefMut::deref_mut should be infallible");
let ptr = ptr.bikeshed_recall_valid();
ptr.as_mut()
}
}
impl<T, B> Display for Ref<B, T>
where
B: ByteSlice,
T: FromBytes + Display + KnownLayout + Immutable + ?Sized,
{
#[inline]
fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
let inner: &T = self;
inner.fmt(fmt)
}
}
impl<T, B> Debug for Ref<B, T>
where
B: ByteSlice,
T: FromBytes + Debug + KnownLayout + Immutable + ?Sized,
{
#[inline]
fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
let inner: &T = self;
fmt.debug_tuple("Ref").field(&inner).finish()
}
}
impl<T, B> Eq for Ref<B, T>
where
B: ByteSlice,
T: FromBytes + Eq + KnownLayout + Immutable + ?Sized,
{
}
impl<T, B> PartialEq for Ref<B, T>
where
B: ByteSlice,
T: FromBytes + PartialEq + KnownLayout + Immutable + ?Sized,
{
#[inline]
fn eq(&self, other: &Self) -> bool {
self.deref().eq(other.deref())
}
}
impl<T, B> Ord for Ref<B, T>
where
B: ByteSlice,
T: FromBytes + Ord + KnownLayout + Immutable + ?Sized,
{
#[inline]
fn cmp(&self, other: &Self) -> Ordering {
let inner: &T = self;
let other_inner: &T = other;
inner.cmp(other_inner)
}
}
impl<T, B> PartialOrd for Ref<B, T>
where
B: ByteSlice,
T: FromBytes + PartialOrd + KnownLayout + Immutable + ?Sized,
{
#[inline]
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
let inner: &T = self;
let other_inner: &T = other;
inner.partial_cmp(other_inner)
}
}
#[cfg(test)]
#[allow(clippy::assertions_on_result_states)]
mod tests {
use core::convert::TryInto as _;
use super::*;
use crate::util::testutil::*;
#[test]
fn test_mut_slice_into_ref() {
// Prior to #1260/#1299, calling `into_ref` on a `&mut [u8]`-backed
// `Ref` was not supportd.
let mut buf = [0u8];
let r = Ref::<&mut [u8], u8>::from_bytes(&mut buf).unwrap();
assert_eq!(Ref::into_ref(r), &0);
}
#[test]
fn test_address() {
// Test that the `Deref` and `DerefMut` implementations return a
// reference which points to the right region of memory.
let buf = [0];
let r = Ref::<_, u8>::from_bytes(&buf[..]).unwrap();
let buf_ptr = buf.as_ptr();
let deref_ptr: *const u8 = r.deref();
assert_eq!(buf_ptr, deref_ptr);
let buf = [0];
let r = Ref::<_, [u8]>::from_bytes(&buf[..]).unwrap();
let buf_ptr = buf.as_ptr();
let deref_ptr = r.deref().as_ptr();
assert_eq!(buf_ptr, deref_ptr);
}
// Verify that values written to a `Ref` are properly shared between the
// typed and untyped representations, that reads via `deref` and `read`
// behave the same, and that writes via `deref_mut` and `write` behave the
// same.
fn test_new_helper(mut r: Ref<&mut [u8], AU64>) {
// assert that the value starts at 0
assert_eq!(*r, AU64(0));
assert_eq!(Ref::read(&r), AU64(0));
// Assert that values written to the typed value are reflected in the
// byte slice.
const VAL1: AU64 = AU64(0xFF00FF00FF00FF00);
*r = VAL1;
assert_eq!(Ref::bytes(&r), &VAL1.to_bytes());
*r = AU64(0);
Ref::write(&mut r, VAL1);
assert_eq!(Ref::bytes(&r), &VAL1.to_bytes());
// Assert that values written to the byte slice are reflected in the
// typed value.
const VAL2: AU64 = AU64(!VAL1.0); // different from `VAL1`
Ref::bytes_mut(&mut r).copy_from_slice(&VAL2.to_bytes()[..]);
assert_eq!(*r, VAL2);
assert_eq!(Ref::read(&r), VAL2);
}
// Verify that values written to a `Ref` are properly shared between the
// typed and untyped representations; pass a value with `typed_len` `AU64`s
// backed by an array of `typed_len * 8` bytes.
fn test_new_helper_slice(mut r: Ref<&mut [u8], [AU64]>, typed_len: usize) {
// Assert that the value starts out zeroed.
assert_eq!(&*r, vec![AU64(0); typed_len].as_slice());
// Check the backing storage is the exact same slice.
let untyped_len = typed_len * 8;
assert_eq!(Ref::bytes(&r).len(), untyped_len);
assert_eq!(Ref::bytes(&r).as_ptr(), r.as_ptr().cast::<u8>());
// Assert that values written to the typed value are reflected in the
// byte slice.
const VAL1: AU64 = AU64(0xFF00FF00FF00FF00);
for typed in &mut *r {
*typed = VAL1;
}
assert_eq!(Ref::bytes(&r), VAL1.0.to_ne_bytes().repeat(typed_len).as_slice());
// Assert that values written to the byte slice are reflected in the
// typed value.
const VAL2: AU64 = AU64(!VAL1.0); // different from VAL1
Ref::bytes_mut(&mut r).copy_from_slice(&VAL2.0.to_ne_bytes().repeat(typed_len));
assert!(r.iter().copied().all(|x| x == VAL2));
}
#[test]
fn test_new_aligned_sized() {
// Test that a properly-aligned, properly-sized buffer works for new,
// new_from_prefix, and new_from_suffix, and that new_from_prefix and
// new_from_suffix return empty slices. Test that a properly-aligned
// buffer whose length is a multiple of the element size works for
// new_slice.
// A buffer with an alignment of 8.
let mut buf = Align::<[u8; 8], AU64>::default();
// `buf.t` should be aligned to 8, so this should always succeed.
test_new_helper(Ref::<_, AU64>::from_bytes(&mut buf.t[..]).unwrap());
{
// In a block so that `r` and `suffix` don't live too long.
buf.set_default();
let (r, suffix) = Ref::<_, AU64>::from_prefix(&mut buf.t[..]).unwrap();
assert!(suffix.is_empty());
test_new_helper(r);
}
{
buf.set_default();
let (prefix, r) = Ref::<_, AU64>::from_suffix(&mut buf.t[..]).unwrap();
assert!(prefix.is_empty());
test_new_helper(r);
}
// A buffer with alignment 8 and length 24. We choose this length very
// intentionally: if we instead used length 16, then the prefix and
// suffix lengths would be identical. In the past, we used length 16,
// which resulted in this test failing to discover the bug uncovered in
// #506.
let mut buf = Align::<[u8; 24], AU64>::default();
// `buf.t` should be aligned to 8 and have a length which is a multiple
// of `size_of::<AU64>()`, so this should always succeed.
test_new_helper_slice(Ref::<_, [AU64]>::from_bytes(&mut buf.t[..]).unwrap(), 3);
buf.set_default();
let r = Ref::<_, [AU64]>::from_bytes_with_elems(&mut buf.t[..], 3).unwrap();
test_new_helper_slice(r, 3);
let ascending: [u8; 24] = (0..24).collect::<Vec<_>>().try_into().unwrap();
// 16 ascending bytes followed by 8 zeros.
let mut ascending_prefix = ascending;
ascending_prefix[16..].copy_from_slice(&[0, 0, 0, 0, 0, 0, 0, 0]);
// 8 zeros followed by 16 ascending bytes.
let mut ascending_suffix = ascending;
ascending_suffix[..8].copy_from_slice(&[0, 0, 0, 0, 0, 0, 0, 0]);
{
buf.t = ascending_suffix;
let (r, suffix) = Ref::<_, [AU64]>::from_prefix_with_elems(&mut buf.t[..], 1).unwrap();
assert_eq!(suffix, &ascending[8..]);
test_new_helper_slice(r, 1);
}
{
buf.t = ascending_prefix;
let (prefix, r) = Ref::<_, [AU64]>::from_suffix_with_elems(&mut buf.t[..], 1).unwrap();
assert_eq!(prefix, &ascending[..16]);
test_new_helper_slice(r, 1);
}
}
#[test]
fn test_new_oversized() {
// Test that a properly-aligned, overly-sized buffer works for
// `new_from_prefix` and `new_from_suffix`, and that they return the
// remainder and prefix of the slice respectively.
let mut buf = Align::<[u8; 16], AU64>::default();
{
// In a block so that `r` and `suffix` don't live too long. `buf.t`
// should be aligned to 8, so this should always succeed.
let (r, suffix) = Ref::<_, AU64>::from_prefix(&mut buf.t[..]).unwrap();
assert_eq!(suffix.len(), 8);
test_new_helper(r);
}
{
buf.set_default();
// `buf.t` should be aligned to 8, so this should always succeed.
let (prefix, r) = Ref::<_, AU64>::from_suffix(&mut buf.t[..]).unwrap();
assert_eq!(prefix.len(), 8);
test_new_helper(r);
}
}
#[test]
#[allow(clippy::cognitive_complexity)]
fn test_new_error() {
// Fail because the buffer is too large.
// A buffer with an alignment of 8.
let buf = Align::<[u8; 16], AU64>::default();
// `buf.t` should be aligned to 8, so only the length check should fail.
assert!(Ref::<_, AU64>::from_bytes(&buf.t[..]).is_err());
// Fail because the buffer is too small.
// A buffer with an alignment of 8.
let buf = Align::<[u8; 4], AU64>::default();
// `buf.t` should be aligned to 8, so only the length check should fail.
assert!(Ref::<_, AU64>::from_bytes(&buf.t[..]).is_err());
assert!(Ref::<_, AU64>::from_prefix(&buf.t[..]).is_err());
assert!(Ref::<_, AU64>::from_suffix(&buf.t[..]).is_err());
// Fail because the length is not a multiple of the element size.
let buf = Align::<[u8; 12], AU64>::default();
// `buf.t` has length 12, but element size is 8.
assert!(Ref::<_, [AU64]>::from_bytes(&buf.t[..]).is_err());
// Fail because the buffer is too short.
let buf = Align::<[u8; 12], AU64>::default();
// `buf.t` has length 12, but the element size is 8 (and we're expecting
// two of them). For each function, we test with a length that would
// cause the size to overflow `usize`, and with a normal length that
// will fail thanks to the buffer being too short; these are different
// error paths, and while the error types are the same, the distinction
// shows up in code coverage metrics.
let n = (usize::MAX / mem::size_of::<AU64>()) + 1;
assert!(Ref::<_, [AU64]>::from_bytes_with_elems(&buf.t[..], n).is_err());
assert!(Ref::<_, [AU64]>::from_bytes_with_elems(&buf.t[..], 2).is_err());
assert!(Ref::<_, [AU64]>::from_prefix_with_elems(&buf.t[..], n).is_err());
assert!(Ref::<_, [AU64]>::from_prefix_with_elems(&buf.t[..], 2).is_err());
assert!(Ref::<_, [AU64]>::from_suffix_with_elems(&buf.t[..], n).is_err());
assert!(Ref::<_, [AU64]>::from_suffix_with_elems(&buf.t[..], 2).is_err());
// Fail because the alignment is insufficient.
// A buffer with an alignment of 8. An odd buffer size is chosen so that
// the last byte of the buffer has odd alignment.
let buf = Align::<[u8; 13], AU64>::default();
// Slicing from 1, we get a buffer with size 12 (so the length check
// should succeed) but an alignment of only 1, which is insufficient.
assert!(Ref::<_, AU64>::from_bytes(&buf.t[1..]).is_err());
assert!(Ref::<_, AU64>::from_prefix(&buf.t[1..]).is_err());
assert!(Ref::<_, [AU64]>::from_bytes(&buf.t[1..]).is_err());
assert!(Ref::<_, [AU64]>::from_bytes_with_elems(&buf.t[1..], 1).is_err());
assert!(Ref::<_, [AU64]>::from_prefix_with_elems(&buf.t[1..], 1).is_err());
assert!(Ref::<_, [AU64]>::from_suffix_with_elems(&buf.t[1..], 1).is_err());
// Slicing is unnecessary here because `new_from_suffix` uses the suffix
// of the slice, which has odd alignment.
assert!(Ref::<_, AU64>::from_suffix(&buf.t[..]).is_err());
// Fail due to arithmetic overflow.
let buf = Align::<[u8; 16], AU64>::default();
let unreasonable_len = usize::MAX / mem::size_of::<AU64>() + 1;
assert!(Ref::<_, [AU64]>::from_prefix_with_elems(&buf.t[..], unreasonable_len).is_err());
assert!(Ref::<_, [AU64]>::from_suffix_with_elems(&buf.t[..], unreasonable_len).is_err());
}
#[test]
#[allow(unstable_name_collisions)]
#[allow(clippy::as_conversions)]
fn test_into_ref_mut() {
#[allow(unused)]
use crate::util::AsAddress as _;
let mut buf = Align::<[u8; 8], u64>::default();
let r = Ref::<_, u64>::from_bytes(&buf.t[..]).unwrap();
let rf = Ref::into_ref(r);
assert_eq!(rf, &0u64);
let buf_addr = (&buf.t as *const [u8; 8]).addr();
assert_eq!((rf as *const u64).addr(), buf_addr);
let r = Ref::<_, u64>::from_bytes(&mut buf.t[..]).unwrap();
let rf = Ref::into_mut(r);
assert_eq!(rf, &mut 0u64);
assert_eq!((rf as *mut u64).addr(), buf_addr);
*rf = u64::MAX;
assert_eq!(buf.t, [0xFF; 8]);
}
#[test]
fn test_display_debug() {
let buf = Align::<[u8; 8], u64>::default();
let r = Ref::<_, u64>::from_bytes(&buf.t[..]).unwrap();
assert_eq!(format!("{}", r), "0");
assert_eq!(format!("{:?}", r), "Ref(0)");
let buf = Align::<[u8; 8], u64>::default();
let r = Ref::<_, [u64]>::from_bytes(&buf.t[..]).unwrap();
assert_eq!(format!("{:?}", r), "Ref([0])");
}
#[test]
fn test_eq() {
let buf1 = 0_u64;
let r1 = Ref::<_, u64>::from_bytes(buf1.as_bytes()).unwrap();
let buf2 = 0_u64;
let r2 = Ref::<_, u64>::from_bytes(buf2.as_bytes()).unwrap();
assert_eq!(r1, r2);
}
#[test]
fn test_ne() {
let buf1 = 0_u64;
let r1 = Ref::<_, u64>::from_bytes(buf1.as_bytes()).unwrap();
let buf2 = 1_u64;
let r2 = Ref::<_, u64>::from_bytes(buf2.as_bytes()).unwrap();
assert_ne!(r1, r2);
}
#[test]
fn test_ord() {
let buf1 = 0_u64;
let r1 = Ref::<_, u64>::from_bytes(buf1.as_bytes()).unwrap();
let buf2 = 1_u64;
let r2 = Ref::<_, u64>::from_bytes(buf2.as_bytes()).unwrap();
assert!(r1 < r2);
assert_eq!(PartialOrd::partial_cmp(&r1, &r2), Some(Ordering::Less));
assert_eq!(Ord::cmp(&r1, &r2), Ordering::Less);
}
}