async_unsync/
semaphore.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
//! A simple asynchronous semaphore for limiting and sequencing access
//! to arbitrary shared resources.

use core::{
    cell::{Cell, UnsafeCell},
    fmt,
    future::Future,
    marker::PhantomPinned,
    mem,
    pin::Pin,
    ptr::{self, NonNull},
    task::{Context, Poll, Waker},
};

/// An unsynchronized (`!Sync`), simple semaphore for asynchronous permit
/// acquisition.
pub struct Semaphore {
    shared: UnsafeCell<Shared>,
}

impl Semaphore {
    /// Creates a new semaphore with the initial number of permits.
    pub const fn new(permits: usize) -> Self {
        Self {
            shared: UnsafeCell::new(Shared { waiters: WaiterQueue::new(), permits, closed: false }),
        }
    }

    /// Closes the semaphore and returns the number of notified pending waiters.
    ///
    /// This prevents the semaphore from issuing new permits and notifies all
    /// pending waiters.
    pub fn close(&self) -> usize {
        // SAFETY: no mutable or aliased access to shared possible
        unsafe { (*self.shared.get()).close() }
    }

    /// Returns `true` if the semaphore has been closed
    pub fn is_closed(&self) -> bool {
        // SAFETY: no mutable or aliased access to shared possible
        unsafe { (*self.shared.get()).is_closed() }
    }

    /// Returns the number of currently registered [`Future`]s waiting for a
    /// [`Permit`].
    pub fn waiters(&self) -> usize {
        // SAFETY: no mutable or aliased access to shared possible
        unsafe { (*self.shared.get()).waiters.len() }
    }

    /// Returns the current number of available permits.
    pub fn available_permits(&self) -> usize {
        // SAFETY: no mutable or aliased access to shared possible
        unsafe { (*self.shared.get()).permits }
    }

    /// Adds `n` new permits to the semaphore.
    pub fn add_permits(&self, n: usize) {
        // SAFETY: no mutable or aliased access to shared possible
        unsafe { (*self.shared.get()).add_permits(n) };
    }

    /// Permanently reduces the number of available permits by `n`.
    pub fn remove_permits(&self, n: usize) {
        // SAFETY: no mutable or aliased access to shared possible
        let shared = unsafe { &mut (*self.shared.get()) };
        shared.permits = shared.permits.saturating_sub(n);
    }

    /// Acquires a single [`Permit`] or returns an [error](TryAcquireError), if
    /// there are no available permits.
    ///
    /// # Errors
    ///
    /// Fails, if the semaphore has been closed or has no available permits.
    pub fn try_acquire(&self) -> Result<Permit<'_>, TryAcquireError> {
        self.try_acquire_many(1)
    }

    /// Acquires `n` [`Permit`]s or returns an [error](TryAcquireError), if
    /// there are not enough available permits.
    ///
    /// # Errors
    ///
    /// Fails, if the semaphore has been closed or has not enough available
    /// permits.
    pub fn try_acquire_many(&self, n: usize) -> Result<Permit<'_>, TryAcquireError> {
        // SAFETY: no mutable or aliased access to shared possible
        unsafe { (*self.shared.get()).try_acquire::<true>(n) }.map(|_| Permit::new(&self.shared, n))
    }

    /// Acquires a single [`Permit`], potentially blocking until one becomes
    /// available.
    ///
    /// # Errors
    ///
    /// Awaiting the [`Future`] fails, if the semaphore has been closed.
    pub fn acquire(&self) -> Acquire<'_> {
        self.build_acquire(1)
    }

    /// Acquires `n` [`Permit`]s, potentially blocking until they become
    /// available.
    ///
    /// # Errors
    ///
    /// Awaiting the [`Future`] fails, if the semaphore has been closed.
    pub fn acquire_many(&self, n: usize) -> Acquire<'_> {
        self.build_acquire(n)
    }

    /// Returns an correctly initialized [`Acquire`] future instance for
    /// acquiring `wants` permits.
    fn build_acquire(&self, wants: usize) -> Acquire<'_> {
        Acquire { shared: &self.shared, waiter: Waiter::new(wants) }
    }
}

impl fmt::Debug for Semaphore {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Semaphore")
            .field("is_closed", &self.is_closed())
            .field("available_permits", &self.available_permits())
            .field("waiters", &self.waiters())
            .finish_non_exhaustive()
    }
}

/// A permit representing access to the [`Semaphore`]'s guarded resource.
pub struct Permit<'a> {
    shared: &'a UnsafeCell<Shared>,
    count: usize,
}

impl<'a> Permit<'a> {
    /// Returns a new [`Permit`] without actually acquiring it.
    ///
    /// NOTE: Only use this to "revive" a Permit that has been explicitly
    /// [forgotten](Permit::forget)!
    fn new(shared: &'a UnsafeCell<Shared>, count: usize) -> Self {
        Self { shared, count }
    }

    /// Drops the permit without returning it to the [`Semaphore`].
    ///
    /// This permanently reduces the number of available permits.
    pub fn forget(self) {
        mem::forget(self);
    }
}

impl Drop for Permit<'_> {
    fn drop(&mut self) {
        // SAFETY: no mutable or aliased access to shared possible
        let shared = unsafe { &mut (*self.shared.get()) };
        shared.add_permits(self.count);
    }
}

impl fmt::Debug for Permit<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Permit").finish_non_exhaustive()
    }
}

/// An error which can occur when a [`Semaphore`] has been closed.
#[derive(Clone, Copy, Debug, PartialEq, PartialOrd)]
pub struct AcquireError(());

impl fmt::Display for AcquireError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str("semaphore closed")
    }
}

#[cfg(feature = "std")]
impl std::error::Error for AcquireError {}

/// An error which can occur when a [`Semaphore`] has been closed or has no
/// available permits.
#[derive(Clone, Copy, Debug, PartialEq, PartialOrd)]
pub enum TryAcquireError {
    /// The semaphore has been [closed](Semaphore::close) and can not issue new
    /// permits.
    Closed,
    /// The semaphore has no available permits.
    NoPermits,
}

#[cfg(feature = "alloc")]
impl From<TryAcquireError> for crate::error::TrySendError<()> {
    fn from(err: TryAcquireError) -> Self {
        match err {
            TryAcquireError::Closed => Self::Closed(()),
            TryAcquireError::NoPermits => Self::Full(()),
        }
    }
}

impl fmt::Display for TryAcquireError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            TryAcquireError::Closed => f.write_str("semaphore closed"),
            TryAcquireError::NoPermits => f.write_str("no permits available"),
        }
    }
}

#[cfg(feature = "std")]
impl std::error::Error for TryAcquireError {}

/// The [`Future`] returned by [`acquire`](Semaphore::acquire), which
/// resolves when the required number of permits becomes available.
pub struct Acquire<'a> {
    /// The shared [`Semaphore`] state.
    shared: &'a UnsafeCell<Shared>,
    /// The state for waiting and resolving the future.
    waiter: Waiter,
}

impl<'a> Future for Acquire<'a> {
    type Output = Result<Permit<'a>, AcquireError>;

    #[inline]
    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        // SAFETY: The `Acquire` future can not be moved before being dropped
        let waiter = unsafe { Pin::map_unchecked(self.as_ref(), |acquire| &acquire.waiter) };

        // SAFETY: no mutable or aliased access to shared possible
        match unsafe { (*self.shared.get()).poll_acquire(waiter, cx) } {
            Poll::Ready(res) => {
                // unconditionally setting waiting to false here avoids having
                // to traverse the waiter queue again when the future is
                // dropped.
                waiter.state.set(WaiterState::Woken);
                match res {
                    Ok(_) => {
                        let shared = self.as_ref().shared;
                        let count = waiter.permits.take();
                        Poll::Ready(Ok(Permit::new(shared, count)))
                    }
                    Err(e) => Poll::Ready(Err(e)),
                }
            }
            Poll::Pending => Poll::Pending,
        }
    }
}

impl Drop for Acquire<'_> {
    fn drop(&mut self) {
        // SAFETY: no mutable or aliased access to shared possible
        let shared = unsafe { &mut (*self.shared.get()) };

        // remove the queued waker, if it was already enqueued
        if let WaiterState::Waiting = self.waiter.state.get() {
            // check, if there exists some entry in queue of waiters with the
            // same ID as this future
            // SAFETY: non-live waiters did not exist in queue, no aliased
            // access possible
            unsafe { shared.waiters.try_remove(&self.waiter) };
        }

        // return all "unused" (i.e., not passed on into a [`Permit`]) permits
        // back to the semaphore
        let permits = self.waiter.permits.get();
        // the order is important here, because `add_permits` may mark permits
        // as handed out again, if they are transfered to other waiters
        shared.add_permits(permits);
    }
}

/// The shared [`Semaphore`] accounting state.
struct Shared {
    /// The queue of registered `Waker`s.
    waiters: WaiterQueue,
    /// The number of currently available permits.
    permits: usize,
    /// The flag indicating if the semaphore has been closed.
    closed: bool,
}

impl Shared {
    /// Closes the semaphore and notifies all remaining waiters.
    #[cold]
    fn close(&mut self) -> usize {
        // SAFETY: non-live waiters di not exist in queue, no aliased access
        // possible
        let woken = unsafe { self.waiters.wake_all() };
        self.closed = true;
        self.waiters = WaiterQueue::new();

        woken
    }

    /// Returns `true` if the semaphore has been closed.
    fn is_closed(&self) -> bool {
        self.closed
    }

    /// Adds `n` permits and wakes all waiters whose requests can now be
    /// completed.
    fn add_permits(&mut self, mut n: usize) {
        while n > 0 {
            // keep checking the waiter queue until are permits are distributed
            if let Some(waiter) = self.waiters.front() {
                // SAFETY: All waiters remain valid while they are enqueued.
                let waiter = unsafe { waiter.as_ref() };
                // check, how many permits have already been assigned and
                // how many were requested
                let diff = waiter.wants - waiter.permits.get();
                if diff > n {
                    // waiter wants more permits than are still available
                    // the waiter gets all available permits & the loop
                    // terminated (n = 0)
                    waiter.permits.set(diff - n);
                    return;
                } else {
                    // the waiters request can be completed, assign all
                    // missing permits, wake the waiter, continue the loop
                    waiter.permits.set(waiter.wants);
                    n -= diff;

                    // SAFETY: All wakers are initialized when the `Waiter`s
                    // are enqueued and all waiters remain valid while they are
                    // enqueued.
                    unsafe {
                        waiter.state.set(WaiterState::Woken);
                        waiter.waker.get().wake_by_ref();
                        // ...finally, dequeue the notified waker
                        self.waiters.pop_front(waiter);
                    };
                }
            } else {
                self.permits = self.permits.saturating_add(n);
                return;
            }
        }
    }

    /// Attempts to reduce available permits by up to `n` or returns an error,
    /// if the semaphore has been closed or has no available permits.
    fn try_acquire<const STRICT: bool>(&mut self, n: usize) -> Result<usize, TryAcquireError> {
        if self.is_closed() {
            return Err(TryAcquireError::Closed);
        }

        if n > self.permits {
            if STRICT || self.permits == 0 {
                return Err(TryAcquireError::NoPermits);
            }

            // hand out all available permits
            let count = self.permits;
            self.permits = 0;
            Ok(count)
        } else {
            // can not underflow because n <= permits
            self.permits -= n;
            Ok(n)
        }
    }

    fn poll_acquire(
        &mut self,
        waiter: Pin<&Waiter>,
        cx: &mut Context<'_>,
    ) -> Poll<Result<(), AcquireError>> {
        if self.closed {
            // a waiter *may* or *may not* be in the queue, but `Acquire::drop`
            // will take care of this eventually
            return Poll::Ready(Err(AcquireError(())));
        }

        match waiter.state.get() {
            WaiterState::Woken => Poll::Ready(Ok(())),
            WaiterState::Inert => self.poll_acquire_initial(waiter, cx),
            WaiterState::Waiting => Poll::Pending,
        }
    }

    fn poll_acquire_initial(
        &mut self,
        waiter: Pin<&Waiter>,
        cx: &mut Context<'_>,
    ) -> Poll<Result<(), AcquireError>> {
        // on first poll, check if there are enough permits to resolve
        // immediately or enqueue a waiter ticket to be notified (i.e. polled
        // again) later
        match self.try_acquire::<false>(waiter.wants) {
            Ok(n) => {
                // check if we got the desired amount or less
                waiter.permits.set(n);
                if n == waiter.wants {
                    return Poll::Ready(Ok(()));
                }
            }
            Err(TryAcquireError::Closed) => return Poll::Ready(Err(AcquireError(()))),
            _ => {}
        };

        // if no or not enough permits are currently available, enqueue a
        // waiter request ticket, to be notified when capacity becomes
        // available
        waiter.state.set(WaiterState::Waiting);
        waiter.waker.set(cx.waker().clone());
        // SAFETY: All waiters remain valid while they are enqueued.
        //
        // Each `Acquire` future contains (owns) a `Waiter` and may either live
        // on the stack or the heap.
        // Each future *must* be pinned before it can be polled and therefore
        // both the future and the waiter will remain in-place for their entire
        // lifetime.
        // When the future/waiter are cancelled or dropped, they will dequeue
        // themselves to ensure no iteration over freed data is possible.
        // Since they must be pinned, leaking or "forgetting" the futures does
        // not break this invariant:
        // In case of a heap-pinned future, the destructor will not be run, but
        // the data will still remain valid for the program duration.
        // In case of a future safely pinned to the stack, there is no way to
        // actually prevent the destructor from running, since only the pinned
        // reference can be leaked.
        unsafe { self.waiters.push_back(waiter.get_ref()) }
        Poll::Pending
    }
}

struct WaiterQueue {
    head: *const Waiter,
    tail: *const Waiter,
}

impl WaiterQueue {
    /// Returns a new empty queue.
    const fn new() -> Self {
        Self { head: ptr::null(), tail: ptr::null() }
    }

    /// Returns the first `Waiter` of `null`, if the queue is empty.
    fn front(&self) -> Option<NonNull<Waiter>> {
        NonNull::new(self.head as *mut Waiter)
    }

    /// Returns the number of currently enqueued `Waiter`s.
    ///
    /// # Safety
    ///
    /// All pointers must reference valid, live and non-aliased `Waiter`s.
    #[cold]
    unsafe fn len(&self) -> usize {
        // this is only used in the [`Debug`] implementation, so counting each
        // waiter one by one here is irrelevant to performance
        let mut curr = self.head;
        let mut waiting = 0;
        while !curr.is_null() {
            // SAFETY: curr is non-null, validity is required by function safety
            curr = unsafe { (*curr).next.get() };
            waiting += 1;
        }

        waiting
    }

    /// Enqueues `waiter` at the back of the queue.
    ///
    /// # Safety
    ///
    /// All pointers must reference valid, live and non-aliased `Waiter`s.
    unsafe fn push_back(&mut self, waiter: &Waiter) {
        if self.tail.is_null() {
            // queue is empty, insert waiter at head
            self.head = waiter;
            self.tail = waiter;
        } else {
            // queue is not empty, insert at tail
            // SAFETY: non-live waiters did not exist in queue, no aliased
            // access possible
            unsafe { (*self.tail).next.set(waiter) };
            waiter.prev.set(self.tail);
            self.tail = waiter;
        }
    }

    /// Searches for `waiter` in the queue and removes it if found.
    ///
    /// # Safety
    ///
    /// All pointers must reference valid, live and non-aliased `Waiter`s.
    #[cold]
    unsafe fn try_remove(&mut self, waiter: &Waiter) {
        let prev = waiter.prev.get();
        if prev.is_null() {
            self.head = waiter.next.get();
        } else {
            // SAFETY: prev is non-null, liveness required by function invariant
            unsafe { (*prev).next.set(waiter.next.get()) };
        }

        let next = waiter.next.get();
        if next.is_null() {
            self.tail = waiter.prev.get();
        } else {
            // SAFETY: next non-null, liveness required by function invariant
            unsafe { (*next).prev.set(waiter.prev.get()) };
        }
    }

    /// Removes `head` from the front of the queue.
    ///
    /// # Safety
    ///
    /// All pointers must reference valid, live and non-aliased `Waiter`s and
    /// `head` must be the current queue head.
    #[inline]
    unsafe fn pop_front(&mut self, head: &Waiter) {
        self.head = head.next.get();
        if self.head.is_null() {
            self.tail = ptr::null();
        } else {
            unsafe { (*self.head).prev.set(ptr::null()) };
        }
    }

    #[cold]
    unsafe fn wake_all(&mut self) -> usize {
        let mut curr = self.head;
        let mut woken = 0;

        while !curr.is_null() {
            // SAFETY: liveness/non-aliasedness required for all waiters by
            // function invariant, curr is non-null and valid
            unsafe {
                let waiter = &*curr;
                waiter.state.set(WaiterState::Woken);
                waiter.waker.get().wake_by_ref();
                curr = waiter.next.get();
            }

            woken += 1;
        }

        woken
    }
}

/// A queue-able waiter that will be notified, when its requested number of
/// semaphore permits has been granted.
struct Waiter {
    /// The number of requested permits.
    wants: usize,
    /// The waker to be woken if the future is enqueued as waiting.
    ///
    /// This field is **never** used, if the waiter does not get enqueued,
    /// because its request can be fulfilled immediately.
    waker: LateInitWaker,
    /// The flag indicating the waiter's state.
    state: Cell<WaiterState>,
    /// The counter of already collected permits.
    permits: Cell<usize>,
    /// The pointer to the next enqueued waiter
    next: Cell<*const Self>,
    /// The pointer to the previous enqueued waiter
    prev: Cell<*const Self>,
    // see: https://gist.github.com/Darksonn/1567538f56af1a8038ecc3c664a42462
    // this marker lets miri pass the self-referential nature of this struct
    _marker: PhantomPinned,
}

impl Waiter {
    const fn new(wants: usize) -> Self {
        Self {
            wants,
            waker: LateInitWaker::new(),
            state: Cell::new(WaiterState::Inert),
            permits: Cell::new(0),
            next: Cell::new(ptr::null()),
            prev: Cell::new(ptr::null()),
            _marker: PhantomPinned,
        }
    }
}

/// The current state of a [`Waiter`].
#[derive(Clone, Copy)]
enum WaiterState {
    /// The waiter is inert and its future has not yet been polled.
    Inert,
    /// The waiter's future has been polled and the waiter was enqueued.
    Waiting,
    /// The waiter's future has been polled to completion.
    ///
    /// If the waiter had been queued it is now no longer queued.
    Woken,
}

/// The `Waker` in an `Acquire` future is only used in case it gets enqueued
/// in the `waiters` list or not at all.
///
/// `get` is only called during traversal of that list, so it is guaranteed to
/// have been initialized
struct LateInitWaker(UnsafeCell<Option<Waker>>);

impl LateInitWaker {
    const fn new() -> Self {
        Self(UnsafeCell::new(None))
    }

    fn set(&self, waker: Waker) {
        // SAFETY: no mutable or aliased access to waker possible, writing the
        // waker is unproblematic due to the required liveness of the pointer.
        // this is never called when there already is a waker
        unsafe { self.0.get().write(Some(waker)) };
    }

    unsafe fn get(&self) -> &Waker {
        // SAFETY: initness required as function invariant
        match &*self.0.get() {
            Some(waker) => waker,
            None => core::hint::unreachable_unchecked(),
        }
    }
}

#[cfg(test)]
mod tests {
    use futures_lite::future;

    use core::{
        future::Future as _,
        ptr,
        task::{Context, Poll, RawWaker, RawWakerVTable, Waker},
    };

    #[test]
    fn try_acquire_one() {
        let sem = super::Semaphore::new(0);
        assert!(sem.try_acquire().is_err());
        sem.add_permits(2);
        let p1 = sem.try_acquire().unwrap();
        let p2 = sem.try_acquire().unwrap();
        assert_eq!(sem.available_permits(), 0);

        drop((p1, p2));
        assert_eq!(sem.available_permits(), 2);
    }

    #[test]
    fn try_acquire_many() {
        let sem = super::Semaphore::new(0);
        assert!(sem.try_acquire_many(3).is_err());
        sem.add_permits(2);
        assert!(sem.try_acquire_many(3).is_err());
        sem.add_permits(1);
        let permit = sem.try_acquire_many(3).unwrap();
        assert_eq!(permit.count, 3);
        drop(permit);
        assert_eq!(sem.available_permits(), 3);
    }

    #[test]
    fn acquire_never() {
        future::block_on(async {
            let sem = super::Semaphore::new(0);
            let mut fut = core::pin::pin!(sem.acquire());

            core::future::poll_fn(|cx| {
                assert!(fut.as_mut().poll(cx).is_pending());
                Poll::Ready(())
            })
            .await;

            assert_eq!(sem.available_permits(), 0);
        });
    }

    #[test]
    fn acquire() {
        future::block_on(async {
            let sem = super::Semaphore::new(0);
            let mut fut = core::pin::pin!(sem.acquire());
            core::future::poll_fn(|cx| {
                assert!(fut.as_mut().poll(cx).is_pending());
                Poll::Ready(())
            })
            .await;

            sem.add_permits(1);
            let permit = fut.await.unwrap();
            drop(permit);
            assert_eq!(sem.available_permits(), 1);
        });
    }

    #[test]
    fn acquire_one() {
        future::block_on(async {
            let sem = super::Semaphore::new(0);
            let mut fut = core::pin::pin!(sem.acquire());

            // poll future once to enqueue waiter
            core::future::poll_fn(|cx| {
                assert!(fut.as_mut().poll(cx).is_pending());
                assert_eq!(sem.waiters(), 1);
                // add 2 permits, one goes directly to the enqueued waiter and
                // wakes it, one goes into the semaphore
                sem.add_permits(2);
                Poll::Ready(())
            })
            .await;

            // future must resolve now, since it has been woken
            let permit = fut.await.unwrap();
            assert_eq!(sem.available_permits(), 1);
            drop(permit);
            assert_eq!(sem.available_permits(), 2);
        });
    }

    #[test]
    fn poll_acquire_after_completion() {
        future::block_on(async {
            let sem = super::Semaphore::new(0);
            let mut fut = core::pin::pin!(sem.acquire());
            core::future::poll_fn(|cx| {
                assert!(fut.as_mut().poll(cx).is_pending());
                Poll::Ready(())
            })
            .await;

            sem.add_permits(1);

            core::future::poll_fn(|cx| {
                assert!(fut.as_mut().poll(cx).is_ready());
                // polling again after completion, works in this case, but might
                // cause a Waker leak under other circumstances.
                assert!(fut.as_mut().poll(cx).is_ready());
                Poll::Ready(())
            })
            .await;

            assert_eq!(sem.available_permits(), 1);
        });
    }

    #[test]
    fn poll_future() {
        static RAW_VTABLE: RawWakerVTable = RawWakerVTable::new(
            |_| RawWaker::new(ptr::null(), &RAW_VTABLE),
            |_| {},
            |_| {},
            |_| {},
        );

        let waker = unsafe { Waker::from_raw(RawWaker::new(ptr::null(), &RAW_VTABLE)) };
        let mut cx = Context::from_waker(&waker);

        let sem = super::Semaphore::new(0);
        let mut fut = Box::pin(sem.build_acquire(1));

        assert!(fut.as_mut().poll(&mut cx).is_pending());
        assert_eq!(sem.waiters(), 1);
        sem.add_permits(1);

        assert!(fut.as_mut().poll(&mut cx).is_ready());
        drop(fut);
        assert_eq!(sem.waiters(), 0);
    }

    #[test]
    fn acquire_many() {
        future::block_on(async {
            let sem = super::Semaphore::new(0);
            let mut f1 = Box::pin(sem.acquire_many(2));
            let mut f2 = Box::pin(sem.acquire_many(1));

            core::future::poll_fn(|cx| {
                // poll both futures once to establish order
                assert!(f1.as_mut().poll(cx).is_pending());
                assert!(f2.as_mut().poll(cx).is_pending());

                assert_eq!(sem.waiters(), 2);
                sem.add_permits(1);

                // due to established order, f2 must not resolve before f1
                assert!(f2.as_mut().poll(cx).is_pending());

                // adding another permit must wake f1
                sem.add_permits(1);
                assert_eq!(sem.waiters(), 1);
                Poll::Ready(())
            })
            .await;

            // f1 should resolve now
            let permit = f1.await.unwrap();
            assert_eq!(sem.waiters(), 1);

            // dropping the permit must pass one permit to the next waiter,
            // wake it and return the other permit back to the semaphore
            drop(permit);
            assert_eq!(sem.waiters(), 0);
            assert_eq!(sem.available_permits(), 1);

            let permit = f2.await.unwrap();
            assert_eq!(sem.available_permits(), 1);
            drop(permit);

            assert_eq!(sem.available_permits(), 2);
        });
    }

    #[test]
    fn cleanup() {
        future::block_on(async {
            let sem = super::Semaphore::new(0);

            let mut fut = Box::pin(sem.acquire());
            // poll once to enqueue the future as waiting
            core::future::poll_fn(|cx| {
                assert!(fut.as_mut().poll(cx).is_pending());
                Poll::Ready(())
            })
            .await;

            // dropping the future should clear up its queue entry immediately
            drop(fut);
            assert_eq!(sem.waiters(), 0);

            let mut fut = Box::pin(sem.acquire());
            // poll once to enqueue the future as waiting
            core::future::poll_fn(|cx| {
                assert!(fut.as_mut().poll(cx).is_pending());
                Poll::Ready(())
            })
            .await;

            // add 1 permit to wake future
            sem.add_permits(1);
            // ..and close semaphore
            assert_eq!(sem.close(), 0);

            assert!(fut.await.is_err());
            assert_eq!(sem.waiters(), 0);
            assert_eq!(sem.available_permits(), 1);
        });
    }

    #[test]
    fn cleanup_after_wake() {
        future::block_on(async {
            let sem = super::Semaphore::new(0);
            let mut fut = Box::pin(sem.acquire());

            core::future::poll_fn(|cx| {
                // poll once to enque the future as waiting
                assert!(fut.as_mut().poll(cx).is_pending());
                Poll::Ready(())
            })
            .await;

            // adding a permit will wake the Acquire future instead of
            // increasing the amount of available permits
            sem.add_permits(1);
            // dropping the future should return the added permit instead of
            // removing the waker from the queue
            drop(fut);

            assert_eq!(sem.waiters(), 0);
            assert_eq!(sem.available_permits(), 1);
        });
    }

    #[test]
    fn close() {
        future::block_on(async {
            let sem = super::Semaphore::new(1);
            let permit = sem.acquire().await.unwrap();

            let mut f1 = Box::pin(sem.acquire());
            let mut f2 = Box::pin(sem.acquire());
            core::future::poll_fn(|cx| {
                // poll once to enqueue the futures as waiting
                assert!(f1.as_mut().poll(cx).is_pending());
                assert!(f2.as_mut().poll(cx).is_pending());
                Poll::Ready(())
            })
            .await;

            assert_eq!(sem.waiters(), 2);
            assert_eq!(sem.close(), 2);
            assert_eq!(sem.waiters(), 0);

            core::future::poll_fn(|cx| {
                // closing the semaphore should have woken the future
                match f1.as_mut().poll(cx) {
                    Poll::Ready(Err(_)) => Poll::Ready(()),
                    _ => panic!("acquire future should have resolved"),
                }
            })
            .await;

            // dropping the resolved future should have no effect
            drop(f1);
            assert_eq!(sem.available_permits(), 0);
            // awaiting f2 must not deadlock, even if not polled manually
            assert!(f2.await.is_err());

            // dropping the permit must return even though the semaphore has
            // been closed
            drop(permit);
            assert_eq!(sem.available_permits(), 1);

            // no further permits must be acquirable
            assert!(sem.try_acquire().is_err());
            assert!(sem.acquire().await.is_err());
        });
    }

    #[test]
    fn return_outstanding_permit_on_close() {
        future::block_on(async {
            let sem = super::Semaphore::new(1);
            let permit = sem.acquire().await.unwrap();

            let mut fut = Box::pin(sem.acquire());
            assert!(future::poll_once(&mut fut).await.is_none());
            assert_eq!(sem.waiters(), 1);

            // dropping a permit will transfer it to the next waiter, waking it
            drop(permit);
            assert_eq!(sem.waiters(), 0);
            assert_eq!(sem.available_permits(), 0);

            // closing by itself will not return the outstanding permit
            sem.close();
            assert_eq!(sem.available_permits(), 0);

            // ... but awaiting the Acquire future should!
            assert!(fut.await.is_err());
            assert_eq!(sem.available_permits(), 1);
        });
    }

    #[test]
    fn return_outstanding_permit_on_cancel() {
        future::block_on(async {
            let sem = super::Semaphore::new(0);

            let mut fut = Box::pin(sem.acquire());
            assert!(future::poll_once(&mut fut).await.is_none());
            assert_eq!(sem.waiters(), 1);

            sem.add_permits(1);
            assert_eq!(sem.waiters(), 0);

            // dropping the unresolved future must return the already
            // transferred permit ownership back to the semaphore
            drop(fut);

            assert_eq!(sem.waiters(), 0);
            assert_eq!(sem.available_permits(), 1);
        });
    }

    #[test]
    fn forget_acquire_future() {
        future::block_on(async {
            async fn acquire_and_forget(sem: &super::Semaphore) {
                let waiters = sem.waiters();
                let mut fut = std::pin::pin!(sem.acquire());
                assert!(future::poll_once(&mut fut).await.is_none());
                assert_eq!(sem.waiters(), waiters + 1);

                // this will not leak the future itself, but only the pinned
                // reference to it, so the actual future will still be dropped
                // correctly
                std::mem::forget(fut);
            }

            let sem = super::Semaphore::new(0);
            acquire_and_forget(&sem).await;
            assert_eq!(sem.waiters(), 0);

            // trash previously used stack space
            let mut arr = [0u8; 1000];
            for v in &mut arr {
                *v = 255;
            }

            let mut f1 = std::pin::pin!(sem.acquire());
            assert!(future::poll_once(&mut f1).await.is_none());
            let mut f2 = std::pin::pin!(sem.acquire());
            assert!(future::poll_once(&mut f2).await.is_none());
            let mut f3 = std::pin::pin!(sem.acquire());
            assert!(future::poll_once(&mut f3).await.is_none());

            assert_eq!(sem.waiters(), 3);
            assert_eq!(sem.available_permits(), 0);
            sem.add_permits(3);

            assert!(matches!(future::poll_once(&mut f1).await, Some(Ok(_))));
            assert!(matches!(future::poll_once(&mut f2).await, Some(Ok(_))));
            assert!(matches!(future::poll_once(&mut f3).await, Some(Ok(_))));

            assert_eq!(sem.waiters(), 0);
            assert_eq!(sem.available_permits(), 3);
        });
    }
}