embedded_fat/fat/
volume.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
//! FAT-specific volume support.

use crate::{
    debug,
    fat::{
        lfn::LfnVisitor, Bpb, Fat16Info, Fat32Info, FatSpecificInfo, FatType, InfoSector,
        OnDiskDirEntry, RESERVED_ENTRIES,
    },
    filesystem::ToShortFileName,
    trace, warn, Attributes, Block, BlockCount, BlockDevice, BlockIdx, ClusterId, DirEntry,
    DirectoryInfo, Error, ShortFileName, TimeSource, VolumeType,
};
use byteorder::{ByteOrder, LittleEndian};
use core::convert::TryFrom;
use core::ops::ControlFlow;

use super::BlockCache;

/// The name given to a particular FAT formatted volume.
#[cfg_attr(feature = "defmt-log", derive(defmt::Format))]
#[derive(Clone, PartialEq, Eq)]
pub struct VolumeName {
    data: [u8; 11],
}

impl VolumeName {
    /// Create a new VolumeName
    pub fn new(data: [u8; 11]) -> VolumeName {
        VolumeName { data }
    }
}

impl core::fmt::Debug for VolumeName {
    fn fmt(&self, fmt: &mut core::fmt::Formatter) -> core::fmt::Result {
        match core::str::from_utf8(&self.data) {
            Ok(s) => write!(fmt, "{:?}", s),
            Err(_e) => write!(fmt, "{:?}", &self.data),
        }
    }
}

/// Identifies a FAT16 or FAT32 Volume on the disk.
#[cfg_attr(feature = "defmt-log", derive(defmt::Format))]
#[derive(Debug, PartialEq, Eq)]
pub struct FatVolume {
    /// The block number of the start of the partition. All other BlockIdx values are relative to this.
    pub(crate) lba_start: BlockIdx,
    /// The number of blocks in this volume
    pub(crate) num_blocks: BlockCount,
    /// The name of this volume
    pub(crate) name: VolumeName,
    /// Number of 512 byte blocks (or Blocks) in a cluster
    pub(crate) blocks_per_cluster: u8,
    /// The block the data starts in. Relative to start of partition (so add
    /// `self.lba_offset` before passing to volume manager)
    pub(crate) first_data_block: BlockCount,
    /// The block the FAT starts in. Relative to start of partition (so add
    /// `self.lba_offset` before passing to volume manager)
    pub(crate) fat_start: BlockCount,
    /// Expected number of free clusters
    pub(crate) free_clusters_count: Option<u32>,
    /// Number of the next expected free cluster
    pub(crate) next_free_cluster: Option<ClusterId>,
    /// Total number of clusters
    pub(crate) cluster_count: u32,
    /// Type of FAT
    pub(crate) fat_specific_info: FatSpecificInfo,
}

impl FatVolume {
    /// Write a new entry in the FAT
    pub async fn update_info_sector<D>(&mut self, block_device: &D) -> Result<(), Error<D::Error>>
    where
        D: BlockDevice,
    {
        match &self.fat_specific_info {
            FatSpecificInfo::Fat16(_) => {
                // FAT16 volumes don't have an info sector
            }
            FatSpecificInfo::Fat32(fat32_info) => {
                if self.free_clusters_count.is_none() && self.next_free_cluster.is_none() {
                    return Ok(());
                }
                let mut blocks = [Block::new()];
                block_device
                    .read(&mut blocks, fat32_info.info_location, "read_info_sector")
                    .await
                    .map_err(Error::DeviceError)?;
                let block = &mut blocks[0];
                if let Some(count) = self.free_clusters_count {
                    block[488..492].copy_from_slice(&count.to_le_bytes());
                }
                if let Some(next_free_cluster) = self.next_free_cluster {
                    block[492..496].copy_from_slice(&next_free_cluster.0.to_le_bytes());
                }
                block_device
                    .write(&blocks, fat32_info.info_location)
                    .await
                    .map_err(Error::DeviceError)?;
            }
        }
        Ok(())
    }

    /// Get the type of FAT this volume is
    pub(crate) fn get_fat_type(&self) -> FatType {
        match &self.fat_specific_info {
            FatSpecificInfo::Fat16(_) => FatType::Fat16,
            FatSpecificInfo::Fat32(_) => FatType::Fat32,
        }
    }

    /// Write a new entry in the FAT
    async fn update_fat<D>(
        &mut self,
        block_device: &D,
        cluster: ClusterId,
        new_value: ClusterId,
    ) -> Result<(), Error<D::Error>>
    where
        D: BlockDevice,
    {
        let mut blocks = [Block::new()];
        let this_fat_block_num;
        match &self.fat_specific_info {
            FatSpecificInfo::Fat16(_fat16_info) => {
                let fat_offset = cluster.0 * 2;
                this_fat_block_num = self.lba_start + self.fat_start.offset_bytes(fat_offset);
                let this_fat_ent_offset = (fat_offset % Block::LEN_U32) as usize;
                block_device
                    .read(&mut blocks, this_fat_block_num, "read_fat")
                    .await
                    .map_err(Error::DeviceError)?;
                // See <https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system>
                let entry = match new_value {
                    ClusterId::INVALID => 0xFFF6,
                    ClusterId::BAD => 0xFFF7,
                    ClusterId::EMPTY => 0x0000,
                    ClusterId::END_OF_FILE => 0xFFFF,
                    _ => new_value.0 as u16,
                };
                LittleEndian::write_u16(
                    &mut blocks[0][this_fat_ent_offset..=this_fat_ent_offset + 1],
                    entry,
                );
            }
            FatSpecificInfo::Fat32(_fat32_info) => {
                // FAT32 => 4 bytes per entry
                let fat_offset = cluster.0 * 4;
                this_fat_block_num = self.lba_start + self.fat_start.offset_bytes(fat_offset);
                let this_fat_ent_offset = (fat_offset % Block::LEN_U32) as usize;
                block_device
                    .read(&mut blocks, this_fat_block_num, "read_fat")
                    .await
                    .map_err(Error::DeviceError)?;
                let entry = match new_value {
                    ClusterId::INVALID => 0x0FFF_FFF6,
                    ClusterId::BAD => 0x0FFF_FFF7,
                    ClusterId::EMPTY => 0x0000_0000,
                    _ => new_value.0,
                };
                let existing = LittleEndian::read_u32(
                    &blocks[0][this_fat_ent_offset..=this_fat_ent_offset + 3],
                );
                let new = (existing & 0xF000_0000) | (entry & 0x0FFF_FFFF);
                LittleEndian::write_u32(
                    &mut blocks[0][this_fat_ent_offset..=this_fat_ent_offset + 3],
                    new,
                );
            }
        }
        block_device
            .write(&blocks, this_fat_block_num)
            .await
            .map_err(Error::DeviceError)?;
        Ok(())
    }

    /// Look in the FAT to see which cluster comes next.
    pub(crate) async fn next_cluster<D>(
        &self,
        block_device: &D,
        cluster: ClusterId,
        fat_block_cache: &mut BlockCache,
    ) -> Result<ClusterId, Error<D::Error>>
    where
        D: BlockDevice,
    {
        match &self.fat_specific_info {
            FatSpecificInfo::Fat16(_fat16_info) => {
                let fat_offset = cluster.0 * 2;
                let this_fat_block_num = self.lba_start + self.fat_start.offset_bytes(fat_offset);
                let this_fat_ent_offset = (fat_offset % Block::LEN_U32) as usize;
                let block = fat_block_cache
                    .read(block_device, this_fat_block_num, "next_cluster")
                    .await?;
                let fat_entry =
                    LittleEndian::read_u16(&block[this_fat_ent_offset..=this_fat_ent_offset + 1]);
                match fat_entry {
                    0xFFF7 => {
                        // Bad cluster
                        Err(Error::BadCluster)
                    }
                    0xFFF8..=0xFFFF => {
                        // There is no next cluster
                        Err(Error::EndOfFile)
                    }
                    f => {
                        // Seems legit
                        Ok(ClusterId(u32::from(f)))
                    }
                }
            }
            FatSpecificInfo::Fat32(_fat32_info) => {
                let fat_offset = cluster.0 * 4;
                let this_fat_block_num = self.lba_start + self.fat_start.offset_bytes(fat_offset);
                let this_fat_ent_offset = (fat_offset % Block::LEN_U32) as usize;
                let block = fat_block_cache
                    .read(block_device, this_fat_block_num, "next_cluster")
                    .await?;
                let fat_entry =
                    LittleEndian::read_u32(&block[this_fat_ent_offset..=this_fat_ent_offset + 3])
                        & 0x0FFF_FFFF;
                match fat_entry {
                    0x0000_0000 => {
                        // Jumped to free space
                        Err(Error::UnterminatedFatChain)
                    }
                    0x0FFF_FFF7 => {
                        // Bad cluster
                        Err(Error::BadCluster)
                    }
                    0x0000_0001 | 0x0FFF_FFF8..=0x0FFF_FFFF => {
                        // There is no next cluster
                        Err(Error::EndOfFile)
                    }
                    f => {
                        // Seems legit
                        Ok(ClusterId(f))
                    }
                }
            }
        }
    }

    /// Number of bytes in a cluster.
    pub(crate) fn bytes_per_cluster(&self) -> u32 {
        u32::from(self.blocks_per_cluster) * Block::LEN_U32
    }

    /// Converts a cluster number (or `Cluster`) to a block number (or
    /// `BlockIdx`). Gives an absolute `BlockIdx` you can pass to the
    /// volume manager.
    pub(crate) fn cluster_to_block(&self, cluster: ClusterId) -> BlockIdx {
        match &self.fat_specific_info {
            FatSpecificInfo::Fat16(fat16_info) => {
                let block_num = match cluster {
                    ClusterId::ROOT_DIR => fat16_info.first_root_dir_block,
                    ClusterId(c) => {
                        // FirstSectorofCluster = ((N – 2) * BPB_SecPerClus) + FirstDataSector;
                        let first_block_of_cluster =
                            BlockCount((c - 2) * u32::from(self.blocks_per_cluster));
                        self.first_data_block + first_block_of_cluster
                    }
                };
                self.lba_start + block_num
            }
            FatSpecificInfo::Fat32(fat32_info) => {
                let cluster_num = match cluster {
                    ClusterId::ROOT_DIR => fat32_info.first_root_dir_cluster.0,
                    c => c.0,
                };
                // FirstSectorofCluster = ((N – 2) * BPB_SecPerClus) + FirstDataSector;
                let first_block_of_cluster =
                    BlockCount((cluster_num - 2) * u32::from(self.blocks_per_cluster));
                self.lba_start + self.first_data_block + first_block_of_cluster
            }
        }
    }

    /// Finds a empty entry space and writes the new entry to it, allocates a new cluster if it's
    /// needed
    pub(crate) async fn write_new_directory_entry<D, T>(
        &mut self,
        block_device: &D,
        time_source: &T,
        dir: &DirectoryInfo,
        name: ShortFileName,
        attributes: Attributes,
    ) -> Result<DirEntry, Error<D::Error>>
    where
        D: BlockDevice,
        T: TimeSource,
    {
        match &self.fat_specific_info {
            FatSpecificInfo::Fat16(fat16_info) => {
                // Root directories on FAT16 have a fixed size, because they use
                // a specially reserved space on disk (see
                // `first_root_dir_block`). Other directories can have any size
                // as they are made of regular clusters.
                let mut current_cluster = Some(dir.cluster);
                let mut first_dir_block_num = match dir.cluster {
                    ClusterId::ROOT_DIR => self.lba_start + fat16_info.first_root_dir_block,
                    _ => self.cluster_to_block(dir.cluster),
                };
                let dir_size = match dir.cluster {
                    ClusterId::ROOT_DIR => {
                        let len_bytes =
                            u32::from(fat16_info.root_entries_count) * OnDiskDirEntry::LEN_U32;
                        BlockCount::from_bytes(len_bytes)
                    }
                    _ => BlockCount(u32::from(self.blocks_per_cluster)),
                };

                // Walk the directory
                let mut blocks = [Block::new()];
                while let Some(cluster) = current_cluster {
                    for block in first_dir_block_num.range(dir_size) {
                        block_device
                            .read(&mut blocks, block, "read_dir")
                            .await
                            .map_err(Error::DeviceError)?;
                        let entries_per_block = Block::LEN / OnDiskDirEntry::LEN;
                        for entry in 0..entries_per_block {
                            let start = entry * OnDiskDirEntry::LEN;
                            let end = (entry + 1) * OnDiskDirEntry::LEN;
                            let dir_entry = OnDiskDirEntry::new(&blocks[0][start..end]);
                            // 0x00 or 0xE5 represents a free entry
                            if !dir_entry.is_valid() {
                                let ctime = time_source.get_timestamp();
                                let entry = DirEntry::new(
                                    name,
                                    attributes,
                                    ClusterId::EMPTY,
                                    ctime,
                                    block,
                                    start as u32,
                                );
                                blocks[0][start..start + 32]
                                    .copy_from_slice(&entry.serialize(FatType::Fat16)[..]);
                                block_device
                                    .write(&blocks, block)
                                    .await
                                    .map_err(Error::DeviceError)?;
                                return Ok(entry);
                            }
                        }
                    }
                    if cluster != ClusterId::ROOT_DIR {
                        let mut block_cache = BlockCache::empty();
                        current_cluster = match self
                            .next_cluster(block_device, cluster, &mut block_cache)
                            .await
                        {
                            Ok(n) => {
                                first_dir_block_num = self.cluster_to_block(n);
                                Some(n)
                            }
                            Err(Error::EndOfFile) => {
                                let c = self
                                    .alloc_cluster(block_device, Some(cluster), true)
                                    .await?;
                                first_dir_block_num = self.cluster_to_block(c);
                                Some(c)
                            }
                            _ => None,
                        };
                    } else {
                        current_cluster = None;
                    }
                }
                Err(Error::NotEnoughSpace)
            }
            FatSpecificInfo::Fat32(fat32_info) => {
                // All directories on FAT32 have a cluster chain but the root
                // dir starts in a specified cluster.
                let mut first_dir_block_num = match dir.cluster {
                    ClusterId::ROOT_DIR => self.cluster_to_block(fat32_info.first_root_dir_cluster),
                    _ => self.cluster_to_block(dir.cluster),
                };
                let mut current_cluster = Some(dir.cluster);
                let mut blocks = [Block::new()];

                let dir_size = BlockCount(u32::from(self.blocks_per_cluster));
                while let Some(cluster) = current_cluster {
                    for block in first_dir_block_num.range(dir_size) {
                        block_device
                            .read(&mut blocks, block, "read_dir")
                            .await
                            .map_err(Error::DeviceError)?;
                        for entry in 0..Block::LEN / OnDiskDirEntry::LEN {
                            let start = entry * OnDiskDirEntry::LEN;
                            let end = (entry + 1) * OnDiskDirEntry::LEN;
                            let dir_entry = OnDiskDirEntry::new(&blocks[0][start..end]);
                            // 0x00 or 0xE5 represents a free entry
                            if !dir_entry.is_valid() {
                                let ctime = time_source.get_timestamp();
                                let entry = DirEntry::new(
                                    name,
                                    attributes,
                                    ClusterId(0),
                                    ctime,
                                    block,
                                    start as u32,
                                );
                                blocks[0][start..start + 32]
                                    .copy_from_slice(&entry.serialize(FatType::Fat32)[..]);
                                block_device
                                    .write(&blocks, block)
                                    .await
                                    .map_err(Error::DeviceError)?;
                                return Ok(entry);
                            }
                        }
                    }
                    let mut block_cache = BlockCache::empty();
                    current_cluster = match self
                        .next_cluster(block_device, cluster, &mut block_cache)
                        .await
                    {
                        Ok(n) => {
                            first_dir_block_num = self.cluster_to_block(n);
                            Some(n)
                        }
                        Err(Error::EndOfFile) => {
                            let c = self
                                .alloc_cluster(block_device, Some(cluster), true)
                                .await?;
                            first_dir_block_num = self.cluster_to_block(c);
                            Some(c)
                        }
                        _ => None,
                    };
                }
                Err(Error::NotEnoughSpace)
            }
        }
    }

    /// Calls callback `func` with every valid entry in the given directory.
    /// Useful for performing directory listings.
    pub(crate) async fn iterate_dir<D, F, T>(
        &self,
        block_device: &D,
        dir: &DirectoryInfo,
        mut func: F,
    ) -> Result<Option<T>, Error<D::Error>>
    where
        F: FnMut(&DirEntry) -> ControlFlow<T>,
        D: BlockDevice,
    {
        self.iterate_dir_generic(block_device, dir, |_, dir_entry| match dir_entry {
            Some(dir_entry) => func(&dir_entry),
            None => ControlFlow::Continue(()),
        })
        .await
    }

    /// Calls callback `func` with every valid entry in the given directory.
    /// Useful for performing directory listings.
    pub(crate) async fn iterate_lfn_dir<D, F, T>(
        &self,
        block_device: &D,
        dir: &DirectoryInfo,
        mut func: F,
    ) -> Result<Option<T>, Error<D::Error>>
    where
        F: FnMut(Option<&str>, &DirEntry) -> ControlFlow<T>,
        D: BlockDevice,
    {
        let mut lfn_visitor = LfnVisitor::default();
        self.iterate_dir_generic(block_device, dir, |on_disk_entry, dir_entry| {
            assert_eq!(on_disk_entry.is_lfn(), dir_entry.is_none());
            match dir_entry {
                Some(dir_entry) => {
                    let lfn = lfn_visitor.take(&dir_entry.name);
                    func(lfn, &dir_entry)
                }
                None => {
                    let lfn_entry = on_disk_entry.lfn_contents().unwrap();
                    lfn_visitor.visit(&lfn_entry);
                    ControlFlow::Continue(())
                }
            }
        })
        .await
    }

    pub(crate) async fn iterate_dir_generic<D, F, T>(
        &self,
        block_device: &D,
        dir: &DirectoryInfo,
        mut func: F,
    ) -> Result<Option<T>, Error<D::Error>>
    where
        F: FnMut(&OnDiskDirEntry, Option<DirEntry>) -> ControlFlow<T>,
        D: BlockDevice,
    {
        match &self.fat_specific_info {
            FatSpecificInfo::Fat16(fat16_info) => {
                // Root directories on FAT16 have a fixed size, because they use
                // a specially reserved space on disk (see
                // `first_root_dir_block`). Other directories can have any size
                // as they are made of regular clusters.
                let mut current_cluster = Some(dir.cluster);
                let mut first_dir_block_num = match dir.cluster {
                    ClusterId::ROOT_DIR => self.lba_start + fat16_info.first_root_dir_block,
                    _ => self.cluster_to_block(dir.cluster),
                };
                let dir_size = match dir.cluster {
                    ClusterId::ROOT_DIR => {
                        let len_bytes =
                            u32::from(fat16_info.root_entries_count) * OnDiskDirEntry::LEN_U32;
                        BlockCount::from_bytes(len_bytes)
                    }
                    _ => BlockCount(u32::from(self.blocks_per_cluster)),
                };

                let mut block_cache = BlockCache::empty();
                while let Some(cluster) = current_cluster {
                    for block_idx in first_dir_block_num.range(dir_size) {
                        let block = block_cache
                            .read(block_device, block_idx, "read_dir")
                            .await?;
                        for entry in 0..Block::LEN / OnDiskDirEntry::LEN {
                            let start = entry * OnDiskDirEntry::LEN;
                            let end = (entry + 1) * OnDiskDirEntry::LEN;
                            let dir_entry = OnDiskDirEntry::new(&block[start..end]);
                            if dir_entry.is_end() {
                                // Can quit early
                                return Ok(None);
                            } else if dir_entry.is_valid() {
                                let entry = if dir_entry.is_lfn() {
                                    None
                                } else {
                                    // Safe, since Block::LEN always fits on a u32
                                    let start = u32::try_from(start).unwrap();
                                    Some(dir_entry.get_entry(FatType::Fat16, block_idx, start))
                                };
                                if let ControlFlow::Break(ret) = func(&dir_entry, entry) {
                                    return Ok(Some(ret));
                                };
                            }
                        }
                    }
                    if cluster != ClusterId::ROOT_DIR {
                        current_cluster = match self
                            .next_cluster(block_device, cluster, &mut block_cache)
                            .await
                        {
                            Ok(n) => {
                                first_dir_block_num = self.cluster_to_block(n);
                                Some(n)
                            }
                            _ => None,
                        };
                    } else {
                        current_cluster = None;
                    }
                }
                Ok(None)
            }
            FatSpecificInfo::Fat32(fat32_info) => {
                // All directories on FAT32 have a cluster chain but the root
                // dir starts in a specified cluster.
                let mut current_cluster = match dir.cluster {
                    ClusterId::ROOT_DIR => Some(fat32_info.first_root_dir_cluster),
                    _ => Some(dir.cluster),
                };
                let mut blocks = [Block::new()];
                let mut block_cache = BlockCache::empty();
                while let Some(cluster) = current_cluster {
                    let block_idx = self.cluster_to_block(cluster);
                    for block in block_idx.range(BlockCount(u32::from(self.blocks_per_cluster))) {
                        block_device
                            .read(&mut blocks, block, "read_dir")
                            .await
                            .map_err(Error::DeviceError)?;
                        for entry in 0..Block::LEN / OnDiskDirEntry::LEN {
                            let start = entry * OnDiskDirEntry::LEN;
                            let end = (entry + 1) * OnDiskDirEntry::LEN;
                            let dir_entry = OnDiskDirEntry::new(&blocks[0][start..end]);
                            if dir_entry.is_end() {
                                // Can quit early
                                return Ok(None);
                            } else if dir_entry.is_valid() {
                                let entry = if dir_entry.is_lfn() {
                                    None
                                } else {
                                    // Safe, since Block::LEN always fits on a u32
                                    let start = u32::try_from(start).unwrap();
                                    Some(dir_entry.get_entry(FatType::Fat32, block, start))
                                };
                                if let ControlFlow::Break(ret) = func(&dir_entry, entry) {
                                    return Ok(Some(ret));
                                };
                            }
                        }
                    }
                    current_cluster = match self
                        .next_cluster(block_device, cluster, &mut block_cache)
                        .await
                    {
                        Ok(n) => Some(n),
                        _ => None,
                    };
                }
                Ok(None)
            }
        }
    }

    /// Get an entry from the given directory
    pub(crate) async fn find_directory_entry<D>(
        &self,
        block_device: &D,
        dir: &DirectoryInfo,
        match_name: &ShortFileName,
    ) -> Result<DirEntry, Error<D::Error>>
    where
        D: BlockDevice,
    {
        match &self.fat_specific_info {
            FatSpecificInfo::Fat16(fat16_info) => {
                // Root directories on FAT16 have a fixed size, because they use
                // a specially reserved space on disk (see
                // `first_root_dir_block`). Other directories can have any size
                // as they are made of regular clusters.
                let mut current_cluster = Some(dir.cluster);
                let mut first_dir_block_num = match dir.cluster {
                    ClusterId::ROOT_DIR => self.lba_start + fat16_info.first_root_dir_block,
                    _ => self.cluster_to_block(dir.cluster),
                };
                let dir_size = match dir.cluster {
                    ClusterId::ROOT_DIR => {
                        let len_bytes =
                            u32::from(fat16_info.root_entries_count) * OnDiskDirEntry::LEN_U32;
                        BlockCount::from_bytes(len_bytes)
                    }
                    _ => BlockCount(u32::from(self.blocks_per_cluster)),
                };

                let mut block_cache = BlockCache::empty();
                while let Some(cluster) = current_cluster {
                    for block in first_dir_block_num.range(dir_size) {
                        match self
                            .find_entry_in_block(block_device, FatType::Fat16, match_name, block)
                            .await
                        {
                            Err(Error::FileNotFound) => continue,
                            x => return x,
                        }
                    }
                    if cluster != ClusterId::ROOT_DIR {
                        current_cluster = match self
                            .next_cluster(block_device, cluster, &mut block_cache)
                            .await
                        {
                            Ok(n) => {
                                first_dir_block_num = self.cluster_to_block(n);
                                Some(n)
                            }
                            _ => None,
                        };
                    } else {
                        current_cluster = None;
                    }
                }
                Err(Error::FileNotFound)
            }
            FatSpecificInfo::Fat32(fat32_info) => {
                let mut current_cluster = match dir.cluster {
                    ClusterId::ROOT_DIR => Some(fat32_info.first_root_dir_cluster),
                    _ => Some(dir.cluster),
                };
                let mut block_cache = BlockCache::empty();
                while let Some(cluster) = current_cluster {
                    let block_idx = self.cluster_to_block(cluster);
                    for block in block_idx.range(BlockCount(u32::from(self.blocks_per_cluster))) {
                        match self
                            .find_entry_in_block(block_device, FatType::Fat32, match_name, block)
                            .await
                        {
                            Err(Error::FileNotFound) => continue,
                            x => return x,
                        }
                    }
                    current_cluster = match self
                        .next_cluster(block_device, cluster, &mut block_cache)
                        .await
                    {
                        Ok(n) => Some(n),
                        _ => None,
                    }
                }
                Err(Error::FileNotFound)
            }
        }
    }

    /// Finds an entry in a given block of directory entries.
    async fn find_entry_in_block<D>(
        &self,
        block_device: &D,
        fat_type: FatType,
        match_name: &ShortFileName,
        block: BlockIdx,
    ) -> Result<DirEntry, Error<D::Error>>
    where
        D: BlockDevice,
    {
        let mut blocks = [Block::new()];
        block_device
            .read(&mut blocks, block, "read_dir")
            .await
            .map_err(Error::DeviceError)?;
        for entry in 0..Block::LEN / OnDiskDirEntry::LEN {
            let start = entry * OnDiskDirEntry::LEN;
            let end = (entry + 1) * OnDiskDirEntry::LEN;
            let dir_entry = OnDiskDirEntry::new(&blocks[0][start..end]);
            if dir_entry.is_end() {
                // Can quit early
                break;
            } else if dir_entry.matches(match_name) {
                // Found it
                // Safe, since Block::LEN always fits on a u32
                let start = u32::try_from(start).unwrap();
                return Ok(dir_entry.get_entry(fat_type, block, start));
            }
        }
        Err(Error::FileNotFound)
    }

    #[allow(missing_docs)]
    pub(crate) async fn find_lfn_directory_entry<D>(
        &self,
        block_device: &D,
        dir: &DirectoryInfo,
        match_name: &str,
    ) -> Result<DirEntry, Error<D::Error>>
    where
        D: BlockDevice,
    {
        // TODO should this check LFN _and_ short name?
        self.iterate_lfn_dir(block_device, dir, |lfn, dir_entry| {
            if match lfn {
                Some(name) => name == match_name,
                None => match_name
                    .to_short_filename()
                    .map(|name| name == dir_entry.name)
                    .unwrap_or(false),
            } {
                ControlFlow::Break(dir_entry.clone())
            } else {
                ControlFlow::Continue(())
            }
        })
        .await?
        .ok_or(Error::FileNotFound)
    }

    /// Delete an entry from the given directory
    pub(crate) async fn delete_directory_entry<D>(
        &self,
        block_device: &D,
        dir: &DirectoryInfo,
        match_name: &ShortFileName,
    ) -> Result<(), Error<D::Error>>
    where
        D: BlockDevice,
    {
        match &self.fat_specific_info {
            FatSpecificInfo::Fat16(fat16_info) => {
                // Root directories on FAT16 have a fixed size, because they use
                // a specially reserved space on disk (see
                // `first_root_dir_block`). Other directories can have any size
                // as they are made of regular clusters.
                let mut current_cluster = Some(dir.cluster);
                let mut first_dir_block_num = match dir.cluster {
                    ClusterId::ROOT_DIR => self.lba_start + fat16_info.first_root_dir_block,
                    _ => self.cluster_to_block(dir.cluster),
                };
                let dir_size = match dir.cluster {
                    ClusterId::ROOT_DIR => {
                        let len_bytes =
                            u32::from(fat16_info.root_entries_count) * OnDiskDirEntry::LEN_U32;
                        BlockCount::from_bytes(len_bytes)
                    }
                    _ => BlockCount(u32::from(self.blocks_per_cluster)),
                };

                // Walk the directory
                while let Some(cluster) = current_cluster {
                    // Scan the cluster / root dir a block at a time
                    for block in first_dir_block_num.range(dir_size) {
                        match self
                            .delete_entry_in_block(block_device, match_name, block)
                            .await
                        {
                            Err(Error::FileNotFound) => {
                                // Carry on
                            }
                            x => {
                                // Either we deleted it OK, or there was some
                                // catastrophic error reading/writing the disk.
                                return x;
                            }
                        }
                    }
                    // if it's not the root dir, find the next cluster so we can keep looking
                    if cluster != ClusterId::ROOT_DIR {
                        let mut block_cache = BlockCache::empty();
                        current_cluster = match self
                            .next_cluster(block_device, cluster, &mut block_cache)
                            .await
                        {
                            Ok(n) => {
                                first_dir_block_num = self.cluster_to_block(n);
                                Some(n)
                            }
                            _ => None,
                        };
                    } else {
                        current_cluster = None;
                    }
                }
                // Ok, give up
            }
            FatSpecificInfo::Fat32(fat32_info) => {
                // Root directories on FAT32 start at a specified cluster, but
                // they can have any length.
                let mut current_cluster = match dir.cluster {
                    ClusterId::ROOT_DIR => Some(fat32_info.first_root_dir_cluster),
                    _ => Some(dir.cluster),
                };
                // Walk the directory
                while let Some(cluster) = current_cluster {
                    // Scan the cluster a block at a time
                    let block_idx = self.cluster_to_block(cluster);
                    for block in block_idx.range(BlockCount(u32::from(self.blocks_per_cluster))) {
                        match self
                            .delete_entry_in_block(block_device, match_name, block)
                            .await
                        {
                            Err(Error::FileNotFound) => {
                                // Carry on
                                continue;
                            }
                            x => {
                                // Either we deleted it OK, or there was some
                                // catastrophic error reading/writing the disk.
                                return x;
                            }
                        }
                    }
                    // Find the next cluster
                    let mut block_cache = BlockCache::empty();
                    current_cluster = match self
                        .next_cluster(block_device, cluster, &mut block_cache)
                        .await
                    {
                        Ok(n) => Some(n),
                        _ => None,
                    }
                }
                // Ok, give up
            }
        }
        // If we get here we never found the right entry in any of the
        // blocks that made up the directory
        Err(Error::FileNotFound)
    }

    /// Deletes a directory entry from a block of directory entries.
    ///
    /// Entries are marked as deleted by setting the first byte of the file name
    /// to a special value.
    async fn delete_entry_in_block<D>(
        &self,
        block_device: &D,
        match_name: &ShortFileName,
        block: BlockIdx,
    ) -> Result<(), Error<D::Error>>
    where
        D: BlockDevice,
    {
        let mut blocks = [Block::new()];
        block_device
            .read(&mut blocks, block, "read_dir")
            .await
            .map_err(Error::DeviceError)?;
        for entry in 0..Block::LEN / OnDiskDirEntry::LEN {
            let start = entry * OnDiskDirEntry::LEN;
            let end = (entry + 1) * OnDiskDirEntry::LEN;
            let dir_entry = OnDiskDirEntry::new(&blocks[0][start..end]);
            if dir_entry.is_end() {
                // Can quit early
                break;
            } else if dir_entry.matches(match_name) {
                let mut blocks = blocks;
                blocks[0].contents[start] = 0xE5;
                return block_device
                    .write(&blocks, block)
                    .await
                    .map_err(Error::DeviceError);
            }
        }
        Err(Error::FileNotFound)
    }

    /// Finds the next free cluster after the start_cluster and before end_cluster
    pub(crate) async fn find_next_free_cluster<D>(
        &self,
        block_device: &D,
        start_cluster: ClusterId,
        end_cluster: ClusterId,
    ) -> Result<ClusterId, Error<D::Error>>
    where
        D: BlockDevice,
    {
        let mut blocks = [Block::new()];
        let mut current_cluster = start_cluster;
        match &self.fat_specific_info {
            FatSpecificInfo::Fat16(_fat16_info) => {
                while current_cluster.0 < end_cluster.0 {
                    trace!(
                        "current_cluster={:?}, end_cluster={:?}",
                        current_cluster,
                        end_cluster
                    );
                    let fat_offset = current_cluster.0 * 2;
                    trace!("fat_offset = {:?}", fat_offset);
                    let this_fat_block_num =
                        self.lba_start + self.fat_start.offset_bytes(fat_offset);
                    trace!("this_fat_block_num = {:?}", this_fat_block_num);
                    let mut this_fat_ent_offset = usize::try_from(fat_offset % Block::LEN_U32)
                        .map_err(|_| Error::ConversionError)?;
                    trace!("Reading block {:?}", this_fat_block_num);
                    block_device
                        .read(&mut blocks, this_fat_block_num, "next_cluster")
                        .await
                        .map_err(Error::DeviceError)?;

                    while this_fat_ent_offset <= Block::LEN - 2 {
                        let fat_entry = LittleEndian::read_u16(
                            &blocks[0][this_fat_ent_offset..=this_fat_ent_offset + 1],
                        );
                        if fat_entry == 0 {
                            return Ok(current_cluster);
                        }
                        this_fat_ent_offset += 2;
                        current_cluster += 1;
                    }
                }
            }
            FatSpecificInfo::Fat32(_fat32_info) => {
                while current_cluster.0 < end_cluster.0 {
                    trace!(
                        "current_cluster={:?}, end_cluster={:?}",
                        current_cluster,
                        end_cluster
                    );
                    let fat_offset = current_cluster.0 * 4;
                    trace!("fat_offset = {:?}", fat_offset);
                    let this_fat_block_num =
                        self.lba_start + self.fat_start.offset_bytes(fat_offset);
                    trace!("this_fat_block_num = {:?}", this_fat_block_num);
                    let mut this_fat_ent_offset = usize::try_from(fat_offset % Block::LEN_U32)
                        .map_err(|_| Error::ConversionError)?;
                    trace!("Reading block {:?}", this_fat_block_num);
                    block_device
                        .read(&mut blocks, this_fat_block_num, "next_cluster")
                        .await
                        .map_err(Error::DeviceError)?;

                    while this_fat_ent_offset <= Block::LEN - 4 {
                        let fat_entry = LittleEndian::read_u32(
                            &blocks[0][this_fat_ent_offset..=this_fat_ent_offset + 3],
                        ) & 0x0FFF_FFFF;
                        if fat_entry == 0 {
                            return Ok(current_cluster);
                        }
                        this_fat_ent_offset += 4;
                        current_cluster += 1;
                    }
                }
            }
        }
        warn!("Out of space...");
        Err(Error::NotEnoughSpace)
    }

    /// Tries to allocate a cluster
    pub(crate) async fn alloc_cluster<D>(
        &mut self,
        block_device: &D,
        prev_cluster: Option<ClusterId>,
        zero: bool,
    ) -> Result<ClusterId, Error<D::Error>>
    where
        D: BlockDevice,
    {
        debug!("Allocating new cluster, prev_cluster={:?}", prev_cluster);
        let end_cluster = ClusterId(self.cluster_count + RESERVED_ENTRIES);
        let start_cluster = match self.next_free_cluster {
            Some(cluster) if cluster.0 < end_cluster.0 => cluster,
            _ => ClusterId(RESERVED_ENTRIES),
        };
        trace!(
            "Finding next free between {:?}..={:?}",
            start_cluster,
            end_cluster
        );
        let new_cluster = match self
            .find_next_free_cluster(block_device, start_cluster, end_cluster)
            .await
        {
            Ok(cluster) => cluster,
            Err(_) if start_cluster.0 > RESERVED_ENTRIES => {
                debug!(
                    "Retrying, finding next free between {:?}..={:?}",
                    ClusterId(RESERVED_ENTRIES),
                    end_cluster
                );
                self.find_next_free_cluster(block_device, ClusterId(RESERVED_ENTRIES), end_cluster)
                    .await?
            }
            Err(e) => return Err(e),
        };
        self.update_fat(block_device, new_cluster, ClusterId::END_OF_FILE)
            .await?;
        if let Some(cluster) = prev_cluster {
            trace!(
                "Updating old cluster {:?} to {:?} in FAT",
                cluster,
                new_cluster
            );
            self.update_fat(block_device, cluster, new_cluster).await?;
        }
        trace!(
            "Finding next free between {:?}..={:?}",
            new_cluster,
            end_cluster
        );
        self.next_free_cluster = match self
            .find_next_free_cluster(block_device, new_cluster, end_cluster)
            .await
        {
            Ok(cluster) => Some(cluster),
            Err(_) if new_cluster.0 > RESERVED_ENTRIES => {
                match self
                    .find_next_free_cluster(block_device, ClusterId(RESERVED_ENTRIES), end_cluster)
                    .await
                {
                    Ok(cluster) => Some(cluster),
                    Err(e) => return Err(e),
                }
            }
            Err(e) => return Err(e),
        };
        debug!("Next free cluster is {:?}", self.next_free_cluster);
        if let Some(ref mut number_free_cluster) = self.free_clusters_count {
            *number_free_cluster -= 1;
        };
        if zero {
            let blocks = [Block::new()];
            let first_block = self.cluster_to_block(new_cluster);
            let num_blocks = BlockCount(u32::from(self.blocks_per_cluster));
            for block in first_block.range(num_blocks) {
                block_device
                    .write(&blocks, block)
                    .await
                    .map_err(Error::DeviceError)?;
            }
        }
        debug!("All done, returning {:?}", new_cluster);
        Ok(new_cluster)
    }

    /// Marks the input cluster as an EOF and all the subsequent clusters in the chain as free
    pub(crate) async fn truncate_cluster_chain<D>(
        &mut self,
        block_device: &D,
        cluster: ClusterId,
    ) -> Result<(), Error<D::Error>>
    where
        D: BlockDevice,
    {
        if cluster.0 < RESERVED_ENTRIES {
            // file doesn't have any valid cluster allocated, there is nothing to do
            return Ok(());
        }
        let mut next = {
            let mut block_cache = BlockCache::empty();
            match self
                .next_cluster(block_device, cluster, &mut block_cache)
                .await
            {
                Ok(n) => n,
                Err(Error::EndOfFile) => return Ok(()),
                Err(e) => return Err(e),
            }
        };
        if let Some(ref mut next_free_cluster) = self.next_free_cluster {
            if next_free_cluster.0 > next.0 {
                *next_free_cluster = next;
            }
        } else {
            self.next_free_cluster = Some(next);
        }
        self.update_fat(block_device, cluster, ClusterId::END_OF_FILE)
            .await?;
        loop {
            let mut block_cache = BlockCache::empty();
            match self
                .next_cluster(block_device, next, &mut block_cache)
                .await
            {
                Ok(n) => {
                    self.update_fat(block_device, next, ClusterId::EMPTY)
                        .await?;
                    next = n;
                }
                Err(Error::EndOfFile) => {
                    self.update_fat(block_device, next, ClusterId::EMPTY)
                        .await?;
                    break;
                }
                Err(e) => return Err(e),
            }
            if let Some(ref mut number_free_cluster) = self.free_clusters_count {
                *number_free_cluster += 1;
            };
        }
        Ok(())
    }
}

/// Load the boot parameter block from the start of the given partition and
/// determine if the partition contains a valid FAT16 or FAT32 file system.
pub async fn parse_volume<D>(
    block_device: &D,
    lba_start: BlockIdx,
    num_blocks: BlockCount,
) -> Result<VolumeType, Error<D::Error>>
where
    D: BlockDevice,
    D::Error: core::fmt::Debug,
{
    let mut blocks = [Block::new()];
    block_device
        .read(&mut blocks, lba_start, "read_bpb")
        .await
        .map_err(Error::DeviceError)?;
    let block = &blocks[0];
    let bpb = Bpb::create_from_bytes(block).map_err(Error::FormatError)?;
    match bpb.fat_type {
        FatType::Fat16 => {
            if bpb.bytes_per_block() as usize != Block::LEN {
                return Err(Error::BadBlockSize(bpb.bytes_per_block()));
            }
            // FirstDataSector = BPB_ResvdSecCnt + (BPB_NumFATs * FATSz) + RootDirSectors;
            let root_dir_blocks = ((u32::from(bpb.root_entries_count()) * OnDiskDirEntry::LEN_U32)
                + (Block::LEN_U32 - 1))
                / Block::LEN_U32;
            let fat_start = BlockCount(u32::from(bpb.reserved_block_count()));
            let first_root_dir_block =
                fat_start + BlockCount(u32::from(bpb.num_fats()) * bpb.fat_size());
            let first_data_block = first_root_dir_block + BlockCount(root_dir_blocks);
            let mut volume = FatVolume {
                lba_start,
                num_blocks,
                name: VolumeName { data: [0u8; 11] },
                blocks_per_cluster: bpb.blocks_per_cluster(),
                first_data_block: (first_data_block),
                fat_start: BlockCount(u32::from(bpb.reserved_block_count())),
                free_clusters_count: None,
                next_free_cluster: None,
                cluster_count: bpb.total_clusters(),
                fat_specific_info: FatSpecificInfo::Fat16(Fat16Info {
                    root_entries_count: bpb.root_entries_count(),
                    first_root_dir_block,
                }),
            };
            volume.name.data[..].copy_from_slice(bpb.volume_label());
            Ok(VolumeType::Fat(volume))
        }
        FatType::Fat32 => {
            // FirstDataSector = BPB_ResvdSecCnt + (BPB_NumFATs * FATSz);
            let first_data_block = u32::from(bpb.reserved_block_count())
                + (u32::from(bpb.num_fats()) * bpb.fat_size());

            // Safe to unwrap since this is a Fat32 Type
            let info_location = bpb.fs_info_block().unwrap();
            let mut info_blocks = [Block::new()];
            block_device
                .read(
                    &mut info_blocks,
                    lba_start + info_location,
                    "read_info_sector",
                )
                .await
                .map_err(Error::DeviceError)?;
            let info_block = &info_blocks[0];
            let info_sector =
                InfoSector::create_from_bytes(info_block).map_err(Error::FormatError)?;

            let mut volume = FatVolume {
                lba_start,
                num_blocks,
                name: VolumeName { data: [0u8; 11] },
                blocks_per_cluster: bpb.blocks_per_cluster(),
                first_data_block: BlockCount(first_data_block),
                fat_start: BlockCount(u32::from(bpb.reserved_block_count())),
                free_clusters_count: info_sector.free_clusters_count(),
                next_free_cluster: info_sector.next_free_cluster(),
                cluster_count: bpb.total_clusters(),
                fat_specific_info: FatSpecificInfo::Fat32(Fat32Info {
                    info_location: lba_start + info_location,
                    first_root_dir_cluster: ClusterId(bpb.first_root_dir_cluster()),
                }),
            };
            volume.name.data[..].copy_from_slice(bpb.volume_label());
            Ok(VolumeType::Fat(volume))
        }
    }
}