futures_util/
abortable.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
use crate::task::AtomicWaker;
use alloc::sync::Arc;
use core::fmt;
use core::pin::Pin;
use core::sync::atomic::{AtomicBool, Ordering};
use futures_core::future::Future;
use futures_core::task::{Context, Poll};
use futures_core::Stream;
use pin_project_lite::pin_project;

pin_project! {
    /// A future/stream which can be remotely short-circuited using an `AbortHandle`.
    #[derive(Debug, Clone)]
    #[must_use = "futures/streams do nothing unless you poll them"]
    pub struct Abortable<T> {
        #[pin]
        task: T,
        inner: Arc<AbortInner>,
    }
}

impl<T> Abortable<T> {
    /// Creates a new `Abortable` future/stream using an existing `AbortRegistration`.
    /// `AbortRegistration`s can be acquired through `AbortHandle::new`.
    ///
    /// When `abort` is called on the handle tied to `reg` or if `abort` has
    /// already been called, the future/stream will complete immediately without making
    /// any further progress.
    ///
    /// # Examples:
    ///
    /// Usage with futures:
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::future::{Abortable, AbortHandle, Aborted};
    ///
    /// let (abort_handle, abort_registration) = AbortHandle::new_pair();
    /// let future = Abortable::new(async { 2 }, abort_registration);
    /// abort_handle.abort();
    /// assert_eq!(future.await, Err(Aborted));
    /// # });
    /// ```
    ///
    /// Usage with streams:
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// # use futures::future::{Abortable, AbortHandle};
    /// # use futures::stream::{self, StreamExt};
    ///
    /// let (abort_handle, abort_registration) = AbortHandle::new_pair();
    /// let mut stream = Abortable::new(stream::iter(vec![1, 2, 3]), abort_registration);
    /// abort_handle.abort();
    /// assert_eq!(stream.next().await, None);
    /// # });
    /// ```
    pub fn new(task: T, reg: AbortRegistration) -> Self {
        Self { task, inner: reg.inner }
    }

    /// Checks whether the task has been aborted. Note that all this
    /// method indicates is whether [`AbortHandle::abort`] was *called*.
    /// This means that it will return `true` even if:
    /// * `abort` was called after the task had completed.
    /// * `abort` was called while the task was being polled - the task may still be running and
    ///   will not be stopped until `poll` returns.
    pub fn is_aborted(&self) -> bool {
        self.inner.aborted.load(Ordering::Relaxed)
    }
}

/// A registration handle for an `Abortable` task.
/// Values of this type can be acquired from `AbortHandle::new` and are used
/// in calls to `Abortable::new`.
#[derive(Debug)]
pub struct AbortRegistration {
    pub(crate) inner: Arc<AbortInner>,
}

impl AbortRegistration {
    /// Create an [`AbortHandle`] from the given [`AbortRegistration`].
    ///
    /// The created [`AbortHandle`] is functionally the same as any other
    /// [`AbortHandle`]s that are associated with the same [`AbortRegistration`],
    /// such as the one created by [`AbortHandle::new_pair`].
    pub fn handle(&self) -> AbortHandle {
        AbortHandle { inner: self.inner.clone() }
    }
}

/// A handle to an `Abortable` task.
#[derive(Debug, Clone)]
pub struct AbortHandle {
    inner: Arc<AbortInner>,
}

impl AbortHandle {
    /// Creates an (`AbortHandle`, `AbortRegistration`) pair which can be used
    /// to abort a running future or stream.
    ///
    /// This function is usually paired with a call to [`Abortable::new`].
    pub fn new_pair() -> (Self, AbortRegistration) {
        let inner =
            Arc::new(AbortInner { waker: AtomicWaker::new(), aborted: AtomicBool::new(false) });

        (Self { inner: inner.clone() }, AbortRegistration { inner })
    }
}

// Inner type storing the waker to awaken and a bool indicating that it
// should be aborted.
#[derive(Debug)]
pub(crate) struct AbortInner {
    pub(crate) waker: AtomicWaker,
    pub(crate) aborted: AtomicBool,
}

/// Indicator that the `Abortable` task was aborted.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct Aborted;

impl fmt::Display for Aborted {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "`Abortable` future has been aborted")
    }
}

#[cfg(feature = "std")]
impl std::error::Error for Aborted {}

impl<T> Abortable<T> {
    fn try_poll<I>(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        poll: impl Fn(Pin<&mut T>, &mut Context<'_>) -> Poll<I>,
    ) -> Poll<Result<I, Aborted>> {
        // Check if the task has been aborted
        if self.is_aborted() {
            return Poll::Ready(Err(Aborted));
        }

        // attempt to complete the task
        if let Poll::Ready(x) = poll(self.as_mut().project().task, cx) {
            return Poll::Ready(Ok(x));
        }

        // Register to receive a wakeup if the task is aborted in the future
        self.inner.waker.register(cx.waker());

        // Check to see if the task was aborted between the first check and
        // registration.
        // Checking with `is_aborted` which uses `Relaxed` is sufficient because
        // `register` introduces an `AcqRel` barrier.
        if self.is_aborted() {
            return Poll::Ready(Err(Aborted));
        }

        Poll::Pending
    }
}

impl<Fut> Future for Abortable<Fut>
where
    Fut: Future,
{
    type Output = Result<Fut::Output, Aborted>;

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        self.try_poll(cx, |fut, cx| fut.poll(cx))
    }
}

impl<St> Stream for Abortable<St>
where
    St: Stream,
{
    type Item = St::Item;

    fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        self.try_poll(cx, |stream, cx| stream.poll_next(cx)).map(Result::ok).map(Option::flatten)
    }
}

impl AbortHandle {
    /// Abort the `Abortable` stream/future associated with this handle.
    ///
    /// Notifies the Abortable task associated with this handle that it
    /// should abort. Note that if the task is currently being polled on
    /// another thread, it will not immediately stop running. Instead, it will
    /// continue to run until its poll method returns.
    pub fn abort(&self) {
        self.inner.aborted.store(true, Ordering::Relaxed);
        self.inner.waker.wake();
    }

    /// Checks whether [`AbortHandle::abort`] was *called* on any associated
    /// [`AbortHandle`]s, which includes all the [`AbortHandle`]s linked with
    /// the same [`AbortRegistration`]. This means that it will return `true`
    /// even if:
    /// * `abort` was called after the task had completed.
    /// * `abort` was called while the task was being polled - the task may still be running and
    ///   will not be stopped until `poll` returns.
    ///
    /// This operation has a Relaxed ordering.
    pub fn is_aborted(&self) -> bool {
        self.inner.aborted.load(Ordering::Relaxed)
    }
}