managed/
slotmap.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
//! A slotmap, a vector-like container with unique keys instead of indices.
//!
//! See the documentation of [`SlotMap`] for details.
//!
//! [`SlotMap`]: struct.SlotMap.html
use super::{ManagedSlice as Slice};

/// Provides links between slots and elements.
///
/// The benefit of separating this struct from the elements is that it is unconditionally `Copy`
/// and `Default`. It also provides better locality for both the indices and the elements which
/// could help with iteration or very large structs.
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct Slot {
    /// The id of this slot.
    ///
    /// If the given out index mismatches the `generation_id` then the element was removed already
    /// and we can return `None` on lookup.
    ///
    /// If the slot is currently unused we will instead provide the index to the previous slot in
    /// the slot-free-list.
    generation_id: GenerationOrFreelink,
}

/// Provides a slotmap based on external memory.
///
/// A slotmap provides a `Vec`-like interface where each entry is associated with a stable
/// index-like key. Lookup with the key will detect if an entry has been removed but does not
/// require a lifetime relation. Compared to other slotmap implementations this does not internally
/// allocate any memory on its own but only relies on the [`Slice`] arguments in the constructor.
///
/// [`Slice`]: ../enum.Slice.html
///
/// ## Usage
///
/// The important aspect is that the slotmap does not create the storage of its own elements, it
/// merely manages one given to it at construction time.
///
/// ```
/// # use managed::{ManagedSlice, SlotMap, SlotIndex};
///
/// let mut elements = [0usize; 1024];
/// let mut slots = [SlotIndex::default(); 1024];
///
/// let mut map = SlotMap::new(
///     ManagedSlice::Borrowed(&mut elements[..]),
///     ManagedSlice::Borrowed(&mut slots[..]));
/// let index = map.insert(42).unwrap();
/// assert_eq!(map.get(index).cloned(), Some(42));
/// ```
pub struct SlotMap<'a, T> {
    /// The slice where elements are placed.
    /// All of them are initialized at all times but not all are logically part of the map.
    elements: Slice<'a, T>,
    /// The logical list of used slots.
    /// Note that a slot is never remove from this list but instead used to track the generation_id
    /// and the link in the free list.
    slots: Partial<'a, Slot>,
    /// The source of generation ids.
    /// Generation ids are a positive, non-zero value.
    generation: Generation,
    /// An index to the top element of the free list.
    /// Refers to the one-past-the-end index of `slots` if there are no elements.
    free_top: usize,
    /// An abstraction around computing wrapped indices in the free list.
    indices: IndexComputer,
}

/// A backing slice tracking an index how far it is logically initialized.
struct Partial<'a, T> {
    slice: Slice<'a, T>,
    next_idx: usize,
}

/// An index into a slotmap.
///
/// The index remains valid until the entry is removed. If accessing the slotmap with the index
/// again after the entry was removed will fail, even if the index where the element was previously
/// stored has been reused for another element.
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct Key {
    idx: usize,
    generation: Generation,
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
struct GenerationOrFreelink(isize);

/// Newtype wrapper around the index of a free slot.
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
struct FreeIndex(usize);

/// The generation counter.
///
/// Has a strictly positive value.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
struct Generation(isize);

/// Offset of a freelist entry to the next entry.
///
/// Has a negative or zero value. Represents the negative of the offset to the next element in the
/// free list, wrapping around at the capacity.
/// The base for the offset is the *next* element for two reasons:
/// * Offset of `0` points to the natural successor.
/// * Offset of `len` would point to the element itself and should not occur.
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct Offset(isize);

/// Links FreeIndex and Offset.
struct IndexComputer(usize);

impl<T> SlotMap<'_, T> {
    /// Retrieve a value by index.
    pub fn get(&self, index: Key) -> Option<&T> {
        let slot_generation = self.slots
            .get(index.idx)?
            .generation_id
            .generation().ok()?;

        if slot_generation != index.generation {
            return None;
        }

        self.elements.get(index.idx)
    }

    /// Retrieve a mutable value by index.
    pub fn get_mut(&mut self, index: Key) -> Option<&mut T> {
        let slot_generation = self.slots
            .get(index.idx)?
            .generation_id
            .generation().ok()?;

        if slot_generation != index.generation {
            return None;
        }

        self.elements.get_mut(index.idx)
    }

    /// Reserve a new entry.
    ///
    /// In case of success, the returned key refers to the entry until it is removed. The entry
    /// itself is not initialized with any particular value but instead retains the value it had in
    /// the backing slice. It is only logically placed into the slot map.
    pub fn reserve(&mut self) -> Option<(Key, &mut T)> {
        let index = self.next_free_slot()?;
        let slot = self.slots.get_mut(index.0).unwrap();
        let element = &mut self.elements[index.0];

        let offset = slot.generation_id
            .free_link()
            .expect("Free link should be free");
        slot.generation_id = self.generation.into();
        let key = Key {
            idx: index.0,
            generation: self.generation,
        };

        self.free_top = self.indices.free_list_next(index, offset);
        self.generation.advance();
        Some((key, element))
    }

    /// Try to insert a value into the map.
    ///
    /// This will fail if there is not enough space. Sugar wrapper around `reserve` for inserting
    /// values. Note that on success, an old value stored in the backing slice will be overwritten.
    /// Use `reserve` directly if it is vital that no old value is dropped.
    pub fn insert(&mut self, value: T) -> Option<Key> {
        // Insertion must work but we don't care about the value.
        let (index, element) = self.reserve()?;
        *element = value;
        Some(index)
    }

    /// Remove an element.
    ///
    /// If successful, return a mutable reference to the removed element so that the caller can
    /// swap it with a logically empty value. Returns `None` if the provided index did not refer to
    /// an element that could be freed.
    pub fn remove(&mut self, index: Key) -> Option<&mut T> {
        if self.get(index).is_none() {
            return None
        }

        // The slot can be freed.
        let free = FreeIndex(index.idx);
        let slot = self.slots.get_mut(index.idx).unwrap();
        assert!(slot.generation_id.generation().is_ok());

        let offset = self.indices.free_list_offset(free, self.free_top);
        slot.generation_id = offset.into();
        self.free_top = index.idx;

        Some(&mut self.elements[index.idx])
    }

    /// Get the next free slot.
    fn next_free_slot(&mut self) -> Option<FreeIndex> {
        // If free_top is one-past-the-end marker one of those is going to fail. Note that this
        // also means extracting one of these statements out of the function may change the
        // semantics if `elements.len() != slots.len()`.

        // Ensure the index refers to an element within the slice or try to allocate a new slot
        // wherein we can fit the element.
        let free = match self.slots.get_mut(self.free_top) {
            // There is a free element in our free list.
            Some(_) => {
                // Ensure that there is also a real element there.
                let _= self.elements.get_mut(self.free_top)?;
                FreeIndex(self.free_top)
            },
            // Need to try an get a new element from the slot slice.
            None => { // Try to get the next one
                // Will not actually wrap if pushing is successful.
                let new_index = self.slots.len();
                // Ensure there is an element where we want to push to.
                let _ = self.elements.get_mut(new_index)?;

                let free_slot = self.slots.try_reserve()?;
                let free_index = FreeIndex(new_index);
                // New top is the new one-past-the-end.
                let new_top = new_index.checked_add(1).unwrap();

                let offset = self.indices.free_list_offset(free_index, new_top);
                free_slot.generation_id = offset.into();
                self.free_top = free_index.0;

                free_index
            }
        };


        // index refers to elements within the slices
        Some(free)
    }
}

impl<'a, T> SlotMap<'a, T> {
    /// Create a slot map.
    ///
    /// The capacity is the minimum of the capacity of the element and slot slices.
    pub fn new(elements: Slice<'a, T>, slots: Slice<'a, Slot>) -> Self {
        let capacity = elements.len().min(slots.len());
        SlotMap {
            elements,
            slots: Partial {
                slice: slots,
                next_idx: 0,
            },
            generation: Generation::default(),
            free_top: 0,
            indices: IndexComputer::from_capacity(capacity),
        }
    }
}

impl<'a, T> Partial<'a, T> {
    fn get(&self, idx: usize) -> Option<&T> {
        if idx >= self.next_idx {
            None
        } else {
            Some(&self.slice[idx])
        }
    }

    fn get_mut(&mut self, idx: usize) -> Option<&mut T> {
        if idx >= self.next_idx {
            None
        } else {
            Some(&mut self.slice[idx])
        }
    }

    fn len(&self) -> usize {
        self.next_idx
    }

    fn try_reserve(&mut self) -> Option<&mut T> {
        if self.next_idx == self.slice.len() {
            None
        } else {
            let idx = self.next_idx;
            self.next_idx += 1;
            Some(&mut self.slice[idx])
        }
    }
}

impl GenerationOrFreelink {
    pub(crate) fn free_link(self) -> Result<Offset, Generation> {
        if self.0 > 0 {
            Err(Generation(self.0))
        } else {
            Ok(Offset(self.0))
        }
    }

    pub(crate) fn generation(self) -> Result<Generation, Offset> {
        match self.free_link() {
            Ok(offset) => Err(offset),
            Err(generation) => Ok(generation),
        }
    }
}

impl IndexComputer {
    pub(crate) fn from_capacity(capacity: usize) -> Self {
        assert!(capacity < isize::max_value() as usize);
        IndexComputer(capacity)
    }

    /// Get the next free list entry.
    /// This applies the offset to the base index, wrapping around if required.
    ///
    /// This is the reverse of `free_list_offset`.
    fn free_list_next(&self, FreeIndex(base): FreeIndex, offset: Offset)
        -> usize
    {
        let capacity = self.0;
        let offset = offset.int_offset();

        assert!(base < capacity);
        assert!(offset <= capacity);
        let base = base + 1;

        if capacity - offset >= base {
            offset + base // Fine within the range
        } else {
            // Mathematically, capacity < offset + base < 2*capacity
            // Wrap once, mod (capacity + 1), result again in range
            offset
                .wrapping_add(base)
                .wrapping_sub(capacity + 1)
        }
    }

    /// Get the offset difference between the index and the next element.
    /// Computes a potentially wrapping positive offset where zero is the element following the
    /// base.
    ///
    /// This is the reverse of `free_list_next`.
    fn free_list_offset(&self, FreeIndex(base): FreeIndex, to: usize)
        -> Offset
    {
        let capacity = self.0;

        assert!(base != to, "Cant offset element to itself");
        assert!(base < capacity, "Should never have to offset the end-of-list marker");
        assert!(to <= capacity, "Can only offset to the end-of-list marker");
        let base = base + 1;

        Offset::from_int_offset(if base <= to {
            to - base
        } else {
            // Wrap once, mod (capacity + 1), result again in range
            to
                .wrapping_add(capacity + 1)
                .wrapping_sub(base)
        })
    }
}

impl Generation {
    pub(crate) fn advance(&mut self) {
        assert!(self.0 > 0);
        self.0 = self.0.wrapping_add(1).max(1)
    }
}

impl Offset {
    pub(crate) fn from_int_offset(offset: usize) -> Self {
        assert!(offset < isize::max_value() as usize);
        Offset((offset as isize).checked_neg().unwrap())
    }

    pub(crate) fn int_offset(self) -> usize {
        self.0.checked_neg().unwrap() as usize
    }
}

impl Default for Generation {
    fn default() -> Self {
        Generation(1)
    }
}

impl From<Generation> for GenerationOrFreelink {
    fn from(gen: Generation) -> GenerationOrFreelink {
        GenerationOrFreelink(gen.0)
    }
}

impl From<Offset> for GenerationOrFreelink {
    fn from(offset: Offset) -> GenerationOrFreelink {
        GenerationOrFreelink(offset.0)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::slice::ManagedSlice as Slice;

    #[test]
    fn simple() {
        let mut elements = [0u32; 2];
        let mut slots = [Slot::default(); 2];

        let mut map = SlotMap::new(
            Slice::Borrowed(&mut elements[..]),
            Slice::Borrowed(&mut slots[..]));
        let key42 = map.insert(42).unwrap();
        let keylo = map.insert('K' as _).unwrap();

        assert_eq!(map.insert(0x9999), None);
        assert_eq!(map.get(key42).cloned(), Some(42));
        assert_eq!(map.get(keylo).cloned(), Some('K' as _));

        assert!(map.remove(key42).is_some());
        assert_eq!(map.get(key42), None);

        let lastkey = map.insert(0x9999).unwrap();
        assert_eq!(map.get(lastkey).cloned(), Some(0x9999));

        *map.remove(keylo).unwrap() = 0;
        assert_eq!(map.get(lastkey).cloned(), Some(0x9999));
        assert!(map.remove(lastkey).is_some());
    }

    #[test]
    fn retained() {
        let mut elements = [0u32; 1];
        let mut slots = [Slot::default(); 1];

        let mut map = SlotMap::new(
            Slice::Borrowed(&mut elements[..]),
            Slice::Borrowed(&mut slots[..]));
        let key = map.insert(0xde).unwrap();
        map.remove(key).unwrap();
        assert_eq!(map.get(key), None);

        let new_key = map.insert(0xad).unwrap();

        assert_eq!(map.get(key), None);
        assert_eq!(map.get(new_key).cloned(), Some(0xad));

        assert_eq!(map.remove(key), None);
        map.remove(new_key).unwrap();

        assert_eq!(map.get(key), None);
        assert_eq!(map.get(new_key), None);
    }

    #[test]
    fn non_simple_free_list() {
        // Check the free list implementation
        let mut elements = [0u32; 3];
        let mut slots = [Slot::default(); 3];

        let mut map = SlotMap::new(
            Slice::Borrowed(&mut elements[..]),
            Slice::Borrowed(&mut slots[..]));

        let key0 = map.insert(0).unwrap();
        let key1 = map.insert(1).unwrap();
        let key2 = map.insert(2).unwrap();

        *map.remove(key1).unwrap() = 0xF;
        assert_eq!(map.free_top, 1);
        assert_eq!(map.get(key0).cloned(), Some(0));
        assert_eq!(map.get(key2).cloned(), Some(2));

        *map.remove(key2).unwrap() = 0xF;
        assert_eq!(map.free_top, 2);
        assert_eq!(map.get(key0).cloned(), Some(0));

        *map.remove(key0).unwrap() = 0xF;
        assert_eq!(map.free_top, 0);

        let key0 = map.insert(0).unwrap();
        assert_eq!(map.free_top, 2);
        let key1 = map.insert(1).unwrap();
        let key2 = map.insert(2).unwrap();
        assert_eq!(map.get(key0).cloned(), Some(0));
        assert_eq!(map.get(key1).cloned(), Some(1));
        assert_eq!(map.get(key2).cloned(), Some(2));
    }
}