embedded_fat/
blockdevice.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
//! Block Device support
//!
//! Generic code for handling block devices, such as types for identifying
//! a particular block on a block device by its index.

/// Represents a standard 512 byte block (also known as a sector). IBM PC
/// formatted 5.25" and 3.5" floppy disks, SD/MMC cards up to 1 GiB in size
/// and IDE/SATA Hard Drives up to about 2 TiB all have 512 byte blocks.
///
/// This library does not support devices with a block size other than 512
/// bytes.
#[derive(Clone)]
pub struct Block {
    /// The 512 bytes in this block (or sector).
    pub contents: [u8; Block::LEN],
}

/// Represents the linear numeric address of a block (or sector). The first
/// block on a disk gets `BlockIdx(0)` (which usually contains the Master Boot
/// Record).
#[cfg_attr(feature = "defmt-log", derive(defmt::Format))]
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub struct BlockIdx(pub u32);

/// Represents the a number of blocks (or sectors). Add this to a `BlockIdx`
/// to get an actual address on disk.
#[cfg_attr(feature = "defmt-log", derive(defmt::Format))]
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub struct BlockCount(pub u32);

/// An iterator returned from `Block::range`.
pub struct BlockIter {
    inclusive_end: BlockIdx,
    current: BlockIdx,
}

/// Represents a block device - a device which can read and write blocks (or
/// sectors). Only supports devices which are <= 2 TiB in size.
pub trait BlockDevice {
    /// The errors that the `BlockDevice` can return. Must be debug formattable.
    type Error: core::fmt::Debug;
    /// Read one or more blocks, starting at the given block index.
    async fn read(
        &self,
        blocks: &mut [Block],
        start_block_idx: BlockIdx,
        reason: &str,
    ) -> Result<(), Self::Error>;
    /// Write one or more blocks, starting at the given block index.
    async fn write(&self, blocks: &[Block], start_block_idx: BlockIdx) -> Result<(), Self::Error>;
    /// Determine how many blocks this device can hold.
    async fn num_blocks(&self) -> Result<BlockCount, Self::Error>;
}

impl Block {
    /// All our blocks are a fixed length of 512 bytes. We do not support
    /// 'Advanced Format' Hard Drives with 4 KiB blocks, nor weird old
    /// pre-3.5-inch floppy disk formats.
    pub const LEN: usize = 512;

    /// Sometimes we want `LEN` as a `u32` and the casts don't look nice.
    pub const LEN_U32: u32 = 512;

    /// Create a new block full of zeros.
    pub fn new() -> Block {
        Block {
            contents: [0u8; Self::LEN],
        }
    }
}

impl Default for Block {
    fn default() -> Self {
        Self::new()
    }
}

impl core::ops::Add<BlockCount> for BlockIdx {
    type Output = BlockIdx;
    fn add(self, rhs: BlockCount) -> BlockIdx {
        BlockIdx(self.0 + rhs.0)
    }
}

impl core::ops::AddAssign<BlockCount> for BlockIdx {
    fn add_assign(&mut self, rhs: BlockCount) {
        self.0 += rhs.0
    }
}

impl core::ops::Add<BlockCount> for BlockCount {
    type Output = BlockCount;
    fn add(self, rhs: BlockCount) -> BlockCount {
        BlockCount(self.0 + rhs.0)
    }
}

impl core::ops::AddAssign<BlockCount> for BlockCount {
    fn add_assign(&mut self, rhs: BlockCount) {
        self.0 += rhs.0
    }
}

impl core::ops::Sub<BlockCount> for BlockIdx {
    type Output = BlockIdx;
    fn sub(self, rhs: BlockCount) -> BlockIdx {
        BlockIdx(self.0 - rhs.0)
    }
}

impl core::ops::SubAssign<BlockCount> for BlockIdx {
    fn sub_assign(&mut self, rhs: BlockCount) {
        self.0 -= rhs.0
    }
}

impl core::ops::Sub<BlockCount> for BlockCount {
    type Output = BlockCount;
    fn sub(self, rhs: BlockCount) -> BlockCount {
        BlockCount(self.0 - rhs.0)
    }
}

impl core::ops::SubAssign<BlockCount> for BlockCount {
    fn sub_assign(&mut self, rhs: BlockCount) {
        self.0 -= rhs.0
    }
}

impl core::ops::Deref for Block {
    type Target = [u8; 512];
    fn deref(&self) -> &[u8; 512] {
        &self.contents
    }
}

impl core::ops::DerefMut for Block {
    fn deref_mut(&mut self) -> &mut [u8; 512] {
        &mut self.contents
    }
}

impl core::fmt::Debug for Block {
    fn fmt(&self, fmt: &mut core::fmt::Formatter) -> core::fmt::Result {
        writeln!(fmt, "Block:")?;
        for line in self.contents.chunks(32) {
            for b in line {
                write!(fmt, "{:02x}", b)?;
            }
            write!(fmt, " ")?;
            for &b in line {
                if (0x20..=0x7F).contains(&b) {
                    write!(fmt, "{}", b as char)?;
                } else {
                    write!(fmt, ".")?;
                }
            }
            writeln!(fmt)?;
        }
        Ok(())
    }
}

impl BlockIdx {
    /// Convert a block index into a 64-bit byte offset from the start of the
    /// volume. Useful if your underlying block device actually works in
    /// bytes, like `open("/dev/mmcblk0")` does on Linux.
    pub fn into_bytes(self) -> u64 {
        (u64::from(self.0)) * (Block::LEN as u64)
    }

    /// Create an iterator from the current `BlockIdx` through the given
    /// number of blocks.
    pub fn range(self, num: BlockCount) -> BlockIter {
        BlockIter::new(self, self + BlockCount(num.0))
    }
}

impl BlockCount {
    /// How many blocks are required to hold this many bytes.
    ///
    /// ```
    /// # use embedded_sdmmc::BlockCount;
    /// assert_eq!(BlockCount::from_bytes(511), BlockCount(1));
    /// assert_eq!(BlockCount::from_bytes(512), BlockCount(1));
    /// assert_eq!(BlockCount::from_bytes(513), BlockCount(2));
    /// assert_eq!(BlockCount::from_bytes(1024), BlockCount(2));
    /// assert_eq!(BlockCount::from_bytes(1025), BlockCount(3));
    /// ```
    pub const fn from_bytes(byte_count: u32) -> BlockCount {
        let mut count = byte_count / Block::LEN_U32;
        if (count * Block::LEN_U32) != byte_count {
            count += 1;
        }
        BlockCount(count)
    }

    /// Take a number of blocks and increment by the integer number of blocks
    /// required to get to the block that holds the byte at the given offset.
    pub fn offset_bytes(self, offset: u32) -> Self {
        BlockCount(self.0 + (offset / Block::LEN_U32))
    }
}

impl BlockIter {
    /// Create a new `BlockIter`, from the given start block, through (and
    /// including) the given end block.
    pub const fn new(start: BlockIdx, inclusive_end: BlockIdx) -> BlockIter {
        BlockIter {
            inclusive_end,
            current: start,
        }
    }
}

impl core::iter::Iterator for BlockIter {
    type Item = BlockIdx;
    fn next(&mut self) -> Option<Self::Item> {
        if self.current.0 >= self.inclusive_end.0 {
            None
        } else {
            let this = self.current;
            self.current += BlockCount(1);
            Some(this)
        }
    }
}