managed/slotmap.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
//! A slotmap, a vector-like container with unique keys instead of indices.
//!
//! See the documentation of [`SlotMap`] for details.
//!
//! [`SlotMap`]: struct.SlotMap.html
use super::{ManagedSlice as Slice};
/// Provides links between slots and elements.
///
/// The benefit of separating this struct from the elements is that it is unconditionally `Copy`
/// and `Default`. It also provides better locality for both the indices and the elements which
/// could help with iteration or very large structs.
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct Slot {
/// The id of this slot.
///
/// If the given out index mismatches the `generation_id` then the element was removed already
/// and we can return `None` on lookup.
///
/// If the slot is currently unused we will instead provide the index to the previous slot in
/// the slot-free-list.
generation_id: GenerationOrFreelink,
}
/// Provides a slotmap based on external memory.
///
/// A slotmap provides a `Vec`-like interface where each entry is associated with a stable
/// index-like key. Lookup with the key will detect if an entry has been removed but does not
/// require a lifetime relation. Compared to other slotmap implementations this does not internally
/// allocate any memory on its own but only relies on the [`Slice`] arguments in the constructor.
///
/// [`Slice`]: ../enum.Slice.html
///
/// ## Usage
///
/// The important aspect is that the slotmap does not create the storage of its own elements, it
/// merely manages one given to it at construction time.
///
/// ```
/// # use managed::{ManagedSlice, SlotMap, SlotIndex};
///
/// let mut elements = [0usize; 1024];
/// let mut slots = [SlotIndex::default(); 1024];
///
/// let mut map = SlotMap::new(
/// ManagedSlice::Borrowed(&mut elements[..]),
/// ManagedSlice::Borrowed(&mut slots[..]));
/// let index = map.insert(42).unwrap();
/// assert_eq!(map.get(index).cloned(), Some(42));
/// ```
pub struct SlotMap<'a, T> {
/// The slice where elements are placed.
/// All of them are initialized at all times but not all are logically part of the map.
elements: Slice<'a, T>,
/// The logical list of used slots.
/// Note that a slot is never remove from this list but instead used to track the generation_id
/// and the link in the free list.
slots: Partial<'a, Slot>,
/// The source of generation ids.
/// Generation ids are a positive, non-zero value.
generation: Generation,
/// An index to the top element of the free list.
/// Refers to the one-past-the-end index of `slots` if there are no elements.
free_top: usize,
/// An abstraction around computing wrapped indices in the free list.
indices: IndexComputer,
}
/// A backing slice tracking an index how far it is logically initialized.
struct Partial<'a, T> {
slice: Slice<'a, T>,
next_idx: usize,
}
/// An index into a slotmap.
///
/// The index remains valid until the entry is removed. If accessing the slotmap with the index
/// again after the entry was removed will fail, even if the index where the element was previously
/// stored has been reused for another element.
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct Key {
idx: usize,
generation: Generation,
}
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
struct GenerationOrFreelink(isize);
/// Newtype wrapper around the index of a free slot.
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
struct FreeIndex(usize);
/// The generation counter.
///
/// Has a strictly positive value.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
struct Generation(isize);
/// Offset of a freelist entry to the next entry.
///
/// Has a negative or zero value. Represents the negative of the offset to the next element in the
/// free list, wrapping around at the capacity.
/// The base for the offset is the *next* element for two reasons:
/// * Offset of `0` points to the natural successor.
/// * Offset of `len` would point to the element itself and should not occur.
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct Offset(isize);
/// Links FreeIndex and Offset.
struct IndexComputer(usize);
impl<T> SlotMap<'_, T> {
/// Retrieve a value by index.
pub fn get(&self, index: Key) -> Option<&T> {
let slot_generation = self.slots
.get(index.idx)?
.generation_id
.generation().ok()?;
if slot_generation != index.generation {
return None;
}
self.elements.get(index.idx)
}
/// Retrieve a mutable value by index.
pub fn get_mut(&mut self, index: Key) -> Option<&mut T> {
let slot_generation = self.slots
.get(index.idx)?
.generation_id
.generation().ok()?;
if slot_generation != index.generation {
return None;
}
self.elements.get_mut(index.idx)
}
/// Reserve a new entry.
///
/// In case of success, the returned key refers to the entry until it is removed. The entry
/// itself is not initialized with any particular value but instead retains the value it had in
/// the backing slice. It is only logically placed into the slot map.
pub fn reserve(&mut self) -> Option<(Key, &mut T)> {
let index = self.next_free_slot()?;
let slot = self.slots.get_mut(index.0).unwrap();
let element = &mut self.elements[index.0];
let offset = slot.generation_id
.free_link()
.expect("Free link should be free");
slot.generation_id = self.generation.into();
let key = Key {
idx: index.0,
generation: self.generation,
};
self.free_top = self.indices.free_list_next(index, offset);
self.generation.advance();
Some((key, element))
}
/// Try to insert a value into the map.
///
/// This will fail if there is not enough space. Sugar wrapper around `reserve` for inserting
/// values. Note that on success, an old value stored in the backing slice will be overwritten.
/// Use `reserve` directly if it is vital that no old value is dropped.
pub fn insert(&mut self, value: T) -> Option<Key> {
// Insertion must work but we don't care about the value.
let (index, element) = self.reserve()?;
*element = value;
Some(index)
}
/// Remove an element.
///
/// If successful, return a mutable reference to the removed element so that the caller can
/// swap it with a logically empty value. Returns `None` if the provided index did not refer to
/// an element that could be freed.
pub fn remove(&mut self, index: Key) -> Option<&mut T> {
if self.get(index).is_none() {
return None
}
// The slot can be freed.
let free = FreeIndex(index.idx);
let slot = self.slots.get_mut(index.idx).unwrap();
assert!(slot.generation_id.generation().is_ok());
let offset = self.indices.free_list_offset(free, self.free_top);
slot.generation_id = offset.into();
self.free_top = index.idx;
Some(&mut self.elements[index.idx])
}
/// Get the next free slot.
fn next_free_slot(&mut self) -> Option<FreeIndex> {
// If free_top is one-past-the-end marker one of those is going to fail. Note that this
// also means extracting one of these statements out of the function may change the
// semantics if `elements.len() != slots.len()`.
// Ensure the index refers to an element within the slice or try to allocate a new slot
// wherein we can fit the element.
let free = match self.slots.get_mut(self.free_top) {
// There is a free element in our free list.
Some(_) => {
// Ensure that there is also a real element there.
let _= self.elements.get_mut(self.free_top)?;
FreeIndex(self.free_top)
},
// Need to try an get a new element from the slot slice.
None => { // Try to get the next one
// Will not actually wrap if pushing is successful.
let new_index = self.slots.len();
// Ensure there is an element where we want to push to.
let _ = self.elements.get_mut(new_index)?;
let free_slot = self.slots.try_reserve()?;
let free_index = FreeIndex(new_index);
// New top is the new one-past-the-end.
let new_top = new_index.checked_add(1).unwrap();
let offset = self.indices.free_list_offset(free_index, new_top);
free_slot.generation_id = offset.into();
self.free_top = free_index.0;
free_index
}
};
// index refers to elements within the slices
Some(free)
}
}
impl<'a, T> SlotMap<'a, T> {
/// Create a slot map.
///
/// The capacity is the minimum of the capacity of the element and slot slices.
pub fn new(elements: Slice<'a, T>, slots: Slice<'a, Slot>) -> Self {
let capacity = elements.len().min(slots.len());
SlotMap {
elements,
slots: Partial {
slice: slots,
next_idx: 0,
},
generation: Generation::default(),
free_top: 0,
indices: IndexComputer::from_capacity(capacity),
}
}
}
impl<'a, T> Partial<'a, T> {
fn get(&self, idx: usize) -> Option<&T> {
if idx >= self.next_idx {
None
} else {
Some(&self.slice[idx])
}
}
fn get_mut(&mut self, idx: usize) -> Option<&mut T> {
if idx >= self.next_idx {
None
} else {
Some(&mut self.slice[idx])
}
}
fn len(&self) -> usize {
self.next_idx
}
fn try_reserve(&mut self) -> Option<&mut T> {
if self.next_idx == self.slice.len() {
None
} else {
let idx = self.next_idx;
self.next_idx += 1;
Some(&mut self.slice[idx])
}
}
}
impl GenerationOrFreelink {
pub(crate) fn free_link(self) -> Result<Offset, Generation> {
if self.0 > 0 {
Err(Generation(self.0))
} else {
Ok(Offset(self.0))
}
}
pub(crate) fn generation(self) -> Result<Generation, Offset> {
match self.free_link() {
Ok(offset) => Err(offset),
Err(generation) => Ok(generation),
}
}
}
impl IndexComputer {
pub(crate) fn from_capacity(capacity: usize) -> Self {
assert!(capacity < isize::max_value() as usize);
IndexComputer(capacity)
}
/// Get the next free list entry.
/// This applies the offset to the base index, wrapping around if required.
///
/// This is the reverse of `free_list_offset`.
fn free_list_next(&self, FreeIndex(base): FreeIndex, offset: Offset)
-> usize
{
let capacity = self.0;
let offset = offset.int_offset();
assert!(base < capacity);
assert!(offset <= capacity);
let base = base + 1;
if capacity - offset >= base {
offset + base // Fine within the range
} else {
// Mathematically, capacity < offset + base < 2*capacity
// Wrap once, mod (capacity + 1), result again in range
offset
.wrapping_add(base)
.wrapping_sub(capacity + 1)
}
}
/// Get the offset difference between the index and the next element.
/// Computes a potentially wrapping positive offset where zero is the element following the
/// base.
///
/// This is the reverse of `free_list_next`.
fn free_list_offset(&self, FreeIndex(base): FreeIndex, to: usize)
-> Offset
{
let capacity = self.0;
assert!(base != to, "Cant offset element to itself");
assert!(base < capacity, "Should never have to offset the end-of-list marker");
assert!(to <= capacity, "Can only offset to the end-of-list marker");
let base = base + 1;
Offset::from_int_offset(if base <= to {
to - base
} else {
// Wrap once, mod (capacity + 1), result again in range
to
.wrapping_add(capacity + 1)
.wrapping_sub(base)
})
}
}
impl Generation {
pub(crate) fn advance(&mut self) {
assert!(self.0 > 0);
self.0 = self.0.wrapping_add(1).max(1)
}
}
impl Offset {
pub(crate) fn from_int_offset(offset: usize) -> Self {
assert!(offset < isize::max_value() as usize);
Offset((offset as isize).checked_neg().unwrap())
}
pub(crate) fn int_offset(self) -> usize {
self.0.checked_neg().unwrap() as usize
}
}
impl Default for Generation {
fn default() -> Self {
Generation(1)
}
}
impl From<Generation> for GenerationOrFreelink {
fn from(gen: Generation) -> GenerationOrFreelink {
GenerationOrFreelink(gen.0)
}
}
impl From<Offset> for GenerationOrFreelink {
fn from(offset: Offset) -> GenerationOrFreelink {
GenerationOrFreelink(offset.0)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::slice::ManagedSlice as Slice;
#[test]
fn simple() {
let mut elements = [0u32; 2];
let mut slots = [Slot::default(); 2];
let mut map = SlotMap::new(
Slice::Borrowed(&mut elements[..]),
Slice::Borrowed(&mut slots[..]));
let key42 = map.insert(42).unwrap();
let keylo = map.insert('K' as _).unwrap();
assert_eq!(map.insert(0x9999), None);
assert_eq!(map.get(key42).cloned(), Some(42));
assert_eq!(map.get(keylo).cloned(), Some('K' as _));
assert!(map.remove(key42).is_some());
assert_eq!(map.get(key42), None);
let lastkey = map.insert(0x9999).unwrap();
assert_eq!(map.get(lastkey).cloned(), Some(0x9999));
*map.remove(keylo).unwrap() = 0;
assert_eq!(map.get(lastkey).cloned(), Some(0x9999));
assert!(map.remove(lastkey).is_some());
}
#[test]
fn retained() {
let mut elements = [0u32; 1];
let mut slots = [Slot::default(); 1];
let mut map = SlotMap::new(
Slice::Borrowed(&mut elements[..]),
Slice::Borrowed(&mut slots[..]));
let key = map.insert(0xde).unwrap();
map.remove(key).unwrap();
assert_eq!(map.get(key), None);
let new_key = map.insert(0xad).unwrap();
assert_eq!(map.get(key), None);
assert_eq!(map.get(new_key).cloned(), Some(0xad));
assert_eq!(map.remove(key), None);
map.remove(new_key).unwrap();
assert_eq!(map.get(key), None);
assert_eq!(map.get(new_key), None);
}
#[test]
fn non_simple_free_list() {
// Check the free list implementation
let mut elements = [0u32; 3];
let mut slots = [Slot::default(); 3];
let mut map = SlotMap::new(
Slice::Borrowed(&mut elements[..]),
Slice::Borrowed(&mut slots[..]));
let key0 = map.insert(0).unwrap();
let key1 = map.insert(1).unwrap();
let key2 = map.insert(2).unwrap();
*map.remove(key1).unwrap() = 0xF;
assert_eq!(map.free_top, 1);
assert_eq!(map.get(key0).cloned(), Some(0));
assert_eq!(map.get(key2).cloned(), Some(2));
*map.remove(key2).unwrap() = 0xF;
assert_eq!(map.free_top, 2);
assert_eq!(map.get(key0).cloned(), Some(0));
*map.remove(key0).unwrap() = 0xF;
assert_eq!(map.free_top, 0);
let key0 = map.insert(0).unwrap();
assert_eq!(map.free_top, 2);
let key1 = map.insert(1).unwrap();
let key2 = map.insert(2).unwrap();
assert_eq!(map.get(key0).cloned(), Some(0));
assert_eq!(map.get(key1).cloned(), Some(1));
assert_eq!(map.get(key2).cloned(), Some(2));
}
}