volatile/volatile_ptr/
operations.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
use core::{marker::PhantomData, ptr::NonNull};

use crate::{
    access::{Access, ReadOnly, ReadWrite, Readable, Writable, WriteOnly},
    ops::{Ops, UnitaryOps},
    VolatilePtr,
};

/// Constructor functions.
///
/// These functions construct new `VolatilePtr` values. While the `new`
/// function creates a `VolatilePtr` instance with unrestricted access, there
/// are also functions for creating read-only or write-only instances.
impl<'a, T> VolatilePtr<'a, T>
where
    T: ?Sized,
{
    /// Turns the given pointer into a `VolatilePtr`.
    ///
    /// ## Safety
    ///
    /// - The given pointer must be valid.
    /// - No other thread must have access to the given pointer. This must remain true
    ///   for the whole lifetime of the `VolatilePtr`.
    pub unsafe fn new(pointer: NonNull<T>) -> VolatilePtr<'a, T, ReadWrite> {
        unsafe { VolatilePtr::new_restricted(ReadWrite, pointer) }
    }

    /// Creates a new read-only volatile pointer from the given raw pointer.
    ///
    /// ## Safety
    ///
    /// The requirements for [`Self::new`] apply to this function too.
    pub const unsafe fn new_read_only(pointer: NonNull<T>) -> VolatilePtr<'a, T, ReadOnly> {
        unsafe { Self::new_restricted(ReadOnly, pointer) }
    }

    /// Creates a new volatile pointer with restricted access from the given raw pointer.
    ///
    /// ## Safety
    ///
    /// The requirements for [`Self::new`] apply to this function too.
    pub const unsafe fn new_restricted<A>(access: A, pointer: NonNull<T>) -> VolatilePtr<'a, T, A>
    where
        A: Access,
    {
        let _ = access;
        unsafe { Self::new_generic(pointer) }
    }

    #[allow(missing_docs)]
    pub const unsafe fn new_restricted_with_ops<A, O>(
        access: A,
        ops: O,
        pointer: NonNull<T>,
    ) -> VolatilePtr<'a, T, A>
    where
        A: Access,
        O: Ops,
    {
        let _ = access;
        let _ = ops;
        unsafe { Self::new_generic(pointer) }
    }

    pub(crate) const unsafe fn new_generic<A, O>(pointer: NonNull<T>) -> VolatilePtr<'a, T, A, O> {
        VolatilePtr {
            pointer,
            reference: PhantomData,
            access: PhantomData,
            ops: PhantomData,
        }
    }
}

impl<'a, T, A, O> VolatilePtr<'a, T, A, O>
where
    T: ?Sized,
{
    /// Performs a volatile read of the contained value.
    ///
    /// Returns a copy of the read value. Volatile reads are guaranteed not to be optimized
    /// away by the compiler, but by themselves do not have atomic ordering
    /// guarantees. To also get atomicity, consider looking at the `Atomic` wrapper types of
    /// the standard/`core` library.
    ///
    /// ## Examples
    ///
    /// ```rust
    /// use volatile::{VolatilePtr, access};
    /// use core::ptr::NonNull;
    ///
    /// let value = 42;
    /// let pointer = unsafe {
    ///     VolatilePtr::new_restricted(access::ReadOnly, NonNull::from(&value))
    /// };
    /// assert_eq!(pointer.read(), 42);
    /// ```
    pub fn read(self) -> T
    where
        T: Copy,
        A: Readable,
        O: UnitaryOps<T>,
    {
        unsafe { O::read(self.pointer.as_ptr()) }
    }

    /// Performs a volatile write, setting the contained value to the given `value`.
    ///
    /// Volatile writes are guaranteed to not be optimized away by the compiler, but by
    /// themselves do not have atomic ordering guarantees. To also get atomicity, consider
    /// looking at the `Atomic` wrapper types of the standard/`core` library.
    ///
    /// ## Example
    ///
    /// ```rust
    /// use volatile::VolatilePtr;
    /// use core::ptr::NonNull;
    ///
    /// let mut value = 42;
    /// let mut volatile = unsafe { VolatilePtr::new((&mut value).into()) };
    /// volatile.write(50);
    ///
    /// assert_eq!(volatile.read(), 50);
    /// ```
    pub fn write(self, value: T)
    where
        T: Copy,
        A: Writable,
        O: UnitaryOps<T>,
    {
        unsafe { O::write(self.pointer.as_ptr(), value) };
    }

    /// Updates the contained value using the given closure and volatile instructions.
    ///
    /// Performs a volatile read of the contained value, passes it to the
    /// function `f`, and then performs a volatile write of the returned value back to
    /// the target.
    ///
    /// ```rust
    /// use volatile::VolatilePtr;
    /// use core::ptr::NonNull;
    ///
    /// let mut value = 42;
    /// let mut volatile = unsafe { VolatilePtr::new((&mut value).into()) };
    /// volatile.update(|val| val + 1);
    ///
    /// assert_eq!(volatile.read(), 43);
    /// ```
    pub fn update<F>(self, f: F)
    where
        T: Copy,
        A: Readable + Writable,
        O: UnitaryOps<T>,
        F: FnOnce(T) -> T,
    {
        let new = f(self.read());
        self.write(new);
    }

    /// Extracts the wrapped raw pointer.
    ///
    /// ## Example
    ///
    /// ```
    /// use volatile::VolatilePtr;
    /// use core::ptr::NonNull;
    ///
    /// let mut value = 42;
    /// let mut volatile = unsafe { VolatilePtr::new((&mut value).into()) };
    /// volatile.write(50);
    /// let unwrapped: *mut i32 = volatile.as_raw_ptr().as_ptr();
    ///
    /// assert_eq!(unsafe { *unwrapped }, 50); // non volatile access, be careful!
    /// ```
    pub fn as_raw_ptr(self) -> NonNull<T> {
        self.pointer
    }

    /// Constructs a new `VolatilePtr` by mapping the wrapped pointer.
    ///
    /// This method is useful for accessing only a part of a volatile value, e.g. a subslice or
    /// a struct field. For struct field access, there is also the safe
    /// [`map_field`][crate::map_field] macro that wraps this function.
    ///
    /// ## Examples
    ///
    /// Accessing a struct field:
    ///
    /// ```
    /// use volatile::VolatilePtr;
    /// use core::ptr::NonNull;
    ///
    /// struct Example { field_1: u32, field_2: u8, }
    /// let mut value = Example { field_1: 15, field_2: 255 };
    /// let mut volatile = unsafe { VolatilePtr::new((&mut value).into()) };
    ///
    /// // construct a volatile pointer to a field
    /// let field_2 = unsafe { volatile.map(|ptr| NonNull::new(core::ptr::addr_of_mut!((*ptr.as_ptr()).field_2)).unwrap()) };
    /// assert_eq!(field_2.read(), 255);
    /// ```
    ///
    /// Don't misuse this method to do a non-volatile read of the referenced value:
    ///
    /// ```
    /// use volatile::VolatilePtr;
    /// use core::ptr::NonNull;
    ///
    /// let mut value = 5;
    /// let mut volatile = unsafe { VolatilePtr::new((&mut value).into()) };
    ///
    /// // DON'T DO THIS:
    /// let mut readout = 0;
    /// unsafe { volatile.map(|value| {
    ///    readout = *value.as_ptr(); // non-volatile read, might lead to bugs
    ///    value
    /// })};
    /// ```
    ///
    /// ## Safety
    ///
    /// The pointer returned by `f` must satisfy the requirements of [`Self::new`].
    pub unsafe fn map<F, U>(self, f: F) -> VolatilePtr<'a, U, A, O>
    where
        F: FnOnce(NonNull<T>) -> NonNull<U>,
        A: Access,
        O: Ops,
        U: ?Sized,
    {
        unsafe { VolatilePtr::new_generic::<A, O>(f(self.pointer)) }
    }
}

/// Methods for restricting access.
impl<'a, T, O> VolatilePtr<'a, T, ReadWrite, O>
where
    T: ?Sized,
{
    /// Restricts access permissions to read-only.
    ///
    /// ## Example
    ///
    /// ```
    /// use volatile::VolatilePtr;
    /// use core::ptr::NonNull;
    ///
    /// let mut value: i16 = -4;
    /// let mut volatile = unsafe { VolatilePtr::new((&mut value).into()) };
    ///
    /// let read_only = volatile.read_only();
    /// assert_eq!(read_only.read(), -4);
    /// // read_only.write(10); // compile-time error
    /// ```
    pub fn read_only(self) -> VolatilePtr<'a, T, ReadOnly, O> {
        unsafe { VolatilePtr::new_generic::<ReadOnly, O>(self.pointer) }
    }

    /// Restricts access permissions to write-only.
    ///
    /// ## Example
    ///
    /// Creating a write-only pointer to a struct field:
    ///
    /// ```
    /// use volatile::{VolatilePtr, map_field};
    /// use core::ptr::NonNull;
    ///
    /// struct Example { field_1: u32, field_2: u8, }
    /// let mut value = Example { field_1: 15, field_2: 255 };
    /// let mut volatile = unsafe { VolatilePtr::new((&mut value).into()) };
    ///
    /// // construct a volatile write-only pointer to `field_2`
    /// let mut field_2 = map_field!(volatile.field_2).write_only();
    /// field_2.write(14);
    /// // field_2.read(); // compile-time error
    /// ```
    pub fn write_only(self) -> VolatilePtr<'a, T, WriteOnly, O> {
        unsafe { VolatilePtr::new_generic::<WriteOnly, O>(self.pointer) }
    }
}