hashbrown/raw/
generic.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
use super::bitmask::BitMask;
use super::EMPTY;
use core::{mem, ptr};

// Use the native word size as the group size. Using a 64-bit group size on
// a 32-bit architecture will just end up being more expensive because
// shifts and multiplies will need to be emulated.

cfg_if! {
    if #[cfg(any(
        target_pointer_width = "64",
        target_arch = "aarch64",
        target_arch = "x86_64",
        target_arch = "wasm32",
    ))] {
        type GroupWord = u64;
        type NonZeroGroupWord = core::num::NonZeroU64;
    } else {
        type GroupWord = u32;
        type NonZeroGroupWord = core::num::NonZeroU32;
    }
}

pub(crate) type BitMaskWord = GroupWord;
pub(crate) type NonZeroBitMaskWord = NonZeroGroupWord;
pub(crate) const BITMASK_STRIDE: usize = 8;
// We only care about the highest bit of each byte for the mask.
#[allow(clippy::cast_possible_truncation, clippy::unnecessary_cast)]
pub(crate) const BITMASK_MASK: BitMaskWord = 0x8080_8080_8080_8080_u64 as GroupWord;
pub(crate) const BITMASK_ITER_MASK: BitMaskWord = !0;

/// Helper function to replicate a byte across a `GroupWord`.
#[inline]
fn repeat(byte: u8) -> GroupWord {
    GroupWord::from_ne_bytes([byte; Group::WIDTH])
}

/// Abstraction over a group of control bytes which can be scanned in
/// parallel.
///
/// This implementation uses a word-sized integer.
#[derive(Copy, Clone)]
pub(crate) struct Group(GroupWord);

// We perform all operations in the native endianness, and convert to
// little-endian just before creating a BitMask. The can potentially
// enable the compiler to eliminate unnecessary byte swaps if we are
// only checking whether a BitMask is empty.
#[allow(clippy::use_self)]
impl Group {
    /// Number of bytes in the group.
    pub(crate) const WIDTH: usize = mem::size_of::<Self>();

    /// Returns a full group of empty bytes, suitable for use as the initial
    /// value for an empty hash table.
    ///
    /// This is guaranteed to be aligned to the group size.
    #[inline]
    pub(crate) const fn static_empty() -> &'static [u8; Group::WIDTH] {
        #[repr(C)]
        struct AlignedBytes {
            _align: [Group; 0],
            bytes: [u8; Group::WIDTH],
        }
        const ALIGNED_BYTES: AlignedBytes = AlignedBytes {
            _align: [],
            bytes: [EMPTY; Group::WIDTH],
        };
        &ALIGNED_BYTES.bytes
    }

    /// Loads a group of bytes starting at the given address.
    #[inline]
    #[allow(clippy::cast_ptr_alignment)] // unaligned load
    pub(crate) unsafe fn load(ptr: *const u8) -> Self {
        Group(ptr::read_unaligned(ptr.cast()))
    }

    /// Loads a group of bytes starting at the given address, which must be
    /// aligned to `mem::align_of::<Group>()`.
    #[inline]
    #[allow(clippy::cast_ptr_alignment)]
    pub(crate) unsafe fn load_aligned(ptr: *const u8) -> Self {
        // FIXME: use align_offset once it stabilizes
        debug_assert_eq!(ptr as usize & (mem::align_of::<Self>() - 1), 0);
        Group(ptr::read(ptr.cast()))
    }

    /// Stores the group of bytes to the given address, which must be
    /// aligned to `mem::align_of::<Group>()`.
    #[inline]
    #[allow(clippy::cast_ptr_alignment)]
    pub(crate) unsafe fn store_aligned(self, ptr: *mut u8) {
        // FIXME: use align_offset once it stabilizes
        debug_assert_eq!(ptr as usize & (mem::align_of::<Self>() - 1), 0);
        ptr::write(ptr.cast(), self.0);
    }

    /// Returns a `BitMask` indicating all bytes in the group which *may*
    /// have the given value.
    ///
    /// This function may return a false positive in certain cases where
    /// the byte in the group differs from the searched value only in its
    /// lowest bit. This is fine because:
    /// - This never happens for `EMPTY` and `DELETED`, only full entries.
    /// - The check for key equality will catch these.
    /// - This only happens if there is at least 1 true match.
    /// - The chance of this happening is very low (< 1% chance per byte).
    #[inline]
    pub(crate) fn match_byte(self, byte: u8) -> BitMask {
        // This algorithm is derived from
        // https://graphics.stanford.edu/~seander/bithacks.html##ValueInWord
        let cmp = self.0 ^ repeat(byte);
        BitMask((cmp.wrapping_sub(repeat(0x01)) & !cmp & repeat(0x80)).to_le())
    }

    /// Returns a `BitMask` indicating all bytes in the group which are
    /// `EMPTY`.
    #[inline]
    pub(crate) fn match_empty(self) -> BitMask {
        // If the high bit is set, then the byte must be either:
        // 1111_1111 (EMPTY) or 1000_0000 (DELETED).
        // So we can just check if the top two bits are 1 by ANDing them.
        BitMask((self.0 & (self.0 << 1) & repeat(0x80)).to_le())
    }

    /// Returns a `BitMask` indicating all bytes in the group which are
    /// `EMPTY` or `DELETED`.
    #[inline]
    pub(crate) fn match_empty_or_deleted(self) -> BitMask {
        // A byte is EMPTY or DELETED iff the high bit is set
        BitMask((self.0 & repeat(0x80)).to_le())
    }

    /// Returns a `BitMask` indicating all bytes in the group which are full.
    #[inline]
    pub(crate) fn match_full(self) -> BitMask {
        self.match_empty_or_deleted().invert()
    }

    /// Performs the following transformation on all bytes in the group:
    /// - `EMPTY => EMPTY`
    /// - `DELETED => EMPTY`
    /// - `FULL => DELETED`
    #[inline]
    pub(crate) fn convert_special_to_empty_and_full_to_deleted(self) -> Self {
        // Map high_bit = 1 (EMPTY or DELETED) to 1111_1111
        // and high_bit = 0 (FULL) to 1000_0000
        //
        // Here's this logic expanded to concrete values:
        //   let full = 1000_0000 (true) or 0000_0000 (false)
        //   !1000_0000 + 1 = 0111_1111 + 1 = 1000_0000 (no carry)
        //   !0000_0000 + 0 = 1111_1111 + 0 = 1111_1111 (no carry)
        let full = !self.0 & repeat(0x80);
        Group(!full + (full >> 7))
    }
}