embedded_fat/blockdevice.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
//! Block Device support
//!
//! Generic code for handling block devices, such as types for identifying
//! a particular block on a block device by its index.
/// Represents a standard 512 byte block (also known as a sector). IBM PC
/// formatted 5.25" and 3.5" floppy disks, SD/MMC cards up to 1 GiB in size
/// and IDE/SATA Hard Drives up to about 2 TiB all have 512 byte blocks.
///
/// This library does not support devices with a block size other than 512
/// bytes.
#[derive(Clone)]
pub struct Block {
/// The 512 bytes in this block (or sector).
pub contents: [u8; Block::LEN],
}
/// Represents the linear numeric address of a block (or sector). The first
/// block on a disk gets `BlockIdx(0)` (which usually contains the Master Boot
/// Record).
#[cfg_attr(feature = "defmt-log", derive(defmt::Format))]
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub struct BlockIdx(pub u32);
/// Represents the a number of blocks (or sectors). Add this to a `BlockIdx`
/// to get an actual address on disk.
#[cfg_attr(feature = "defmt-log", derive(defmt::Format))]
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub struct BlockCount(pub u32);
/// An iterator returned from `Block::range`.
pub struct BlockIter {
inclusive_end: BlockIdx,
current: BlockIdx,
}
/// Represents a block device - a device which can read and write blocks (or
/// sectors). Only supports devices which are <= 2 TiB in size.
pub trait BlockDevice {
/// The errors that the `BlockDevice` can return. Must be debug formattable.
type Error: core::fmt::Debug;
/// Read one or more blocks, starting at the given block index.
async fn read(
&self,
blocks: &mut [Block],
start_block_idx: BlockIdx,
reason: &str,
) -> Result<(), Self::Error>;
/// Write one or more blocks, starting at the given block index.
async fn write(&self, blocks: &[Block], start_block_idx: BlockIdx) -> Result<(), Self::Error>;
/// Determine how many blocks this device can hold.
async fn num_blocks(&self) -> Result<BlockCount, Self::Error>;
}
impl Block {
/// All our blocks are a fixed length of 512 bytes. We do not support
/// 'Advanced Format' Hard Drives with 4 KiB blocks, nor weird old
/// pre-3.5-inch floppy disk formats.
pub const LEN: usize = 512;
/// Sometimes we want `LEN` as a `u32` and the casts don't look nice.
pub const LEN_U32: u32 = 512;
/// Create a new block full of zeros.
pub fn new() -> Block {
Block {
contents: [0u8; Self::LEN],
}
}
}
impl Default for Block {
fn default() -> Self {
Self::new()
}
}
impl core::ops::Add<BlockCount> for BlockIdx {
type Output = BlockIdx;
fn add(self, rhs: BlockCount) -> BlockIdx {
BlockIdx(self.0 + rhs.0)
}
}
impl core::ops::AddAssign<BlockCount> for BlockIdx {
fn add_assign(&mut self, rhs: BlockCount) {
self.0 += rhs.0
}
}
impl core::ops::Add<BlockCount> for BlockCount {
type Output = BlockCount;
fn add(self, rhs: BlockCount) -> BlockCount {
BlockCount(self.0 + rhs.0)
}
}
impl core::ops::AddAssign<BlockCount> for BlockCount {
fn add_assign(&mut self, rhs: BlockCount) {
self.0 += rhs.0
}
}
impl core::ops::Sub<BlockCount> for BlockIdx {
type Output = BlockIdx;
fn sub(self, rhs: BlockCount) -> BlockIdx {
BlockIdx(self.0 - rhs.0)
}
}
impl core::ops::SubAssign<BlockCount> for BlockIdx {
fn sub_assign(&mut self, rhs: BlockCount) {
self.0 -= rhs.0
}
}
impl core::ops::Sub<BlockCount> for BlockCount {
type Output = BlockCount;
fn sub(self, rhs: BlockCount) -> BlockCount {
BlockCount(self.0 - rhs.0)
}
}
impl core::ops::SubAssign<BlockCount> for BlockCount {
fn sub_assign(&mut self, rhs: BlockCount) {
self.0 -= rhs.0
}
}
impl core::ops::Deref for Block {
type Target = [u8; 512];
fn deref(&self) -> &[u8; 512] {
&self.contents
}
}
impl core::ops::DerefMut for Block {
fn deref_mut(&mut self) -> &mut [u8; 512] {
&mut self.contents
}
}
impl core::fmt::Debug for Block {
fn fmt(&self, fmt: &mut core::fmt::Formatter) -> core::fmt::Result {
writeln!(fmt, "Block:")?;
for line in self.contents.chunks(32) {
for b in line {
write!(fmt, "{:02x}", b)?;
}
write!(fmt, " ")?;
for &b in line {
if (0x20..=0x7F).contains(&b) {
write!(fmt, "{}", b as char)?;
} else {
write!(fmt, ".")?;
}
}
writeln!(fmt)?;
}
Ok(())
}
}
impl BlockIdx {
/// Convert a block index into a 64-bit byte offset from the start of the
/// volume. Useful if your underlying block device actually works in
/// bytes, like `open("/dev/mmcblk0")` does on Linux.
pub fn into_bytes(self) -> u64 {
(u64::from(self.0)) * (Block::LEN as u64)
}
/// Create an iterator from the current `BlockIdx` through the given
/// number of blocks.
pub fn range(self, num: BlockCount) -> BlockIter {
BlockIter::new(self, self + BlockCount(num.0))
}
}
impl BlockCount {
/// How many blocks are required to hold this many bytes.
///
/// ```
/// # use embedded_sdmmc::BlockCount;
/// assert_eq!(BlockCount::from_bytes(511), BlockCount(1));
/// assert_eq!(BlockCount::from_bytes(512), BlockCount(1));
/// assert_eq!(BlockCount::from_bytes(513), BlockCount(2));
/// assert_eq!(BlockCount::from_bytes(1024), BlockCount(2));
/// assert_eq!(BlockCount::from_bytes(1025), BlockCount(3));
/// ```
pub const fn from_bytes(byte_count: u32) -> BlockCount {
let mut count = byte_count / Block::LEN_U32;
if (count * Block::LEN_U32) != byte_count {
count += 1;
}
BlockCount(count)
}
/// Take a number of blocks and increment by the integer number of blocks
/// required to get to the block that holds the byte at the given offset.
pub fn offset_bytes(self, offset: u32) -> Self {
BlockCount(self.0 + (offset / Block::LEN_U32))
}
}
impl BlockIter {
/// Create a new `BlockIter`, from the given start block, through (and
/// including) the given end block.
pub const fn new(start: BlockIdx, inclusive_end: BlockIdx) -> BlockIter {
BlockIter {
inclusive_end,
current: start,
}
}
}
impl core::iter::Iterator for BlockIter {
type Item = BlockIdx;
fn next(&mut self) -> Option<Self::Item> {
if self.current.0 >= self.inclusive_end.0 {
None
} else {
let this = self.current;
self.current += BlockCount(1);
Some(this)
}
}
}