smoltcp/phy/
mod.rs

1/*! Access to networking hardware.
2
3The `phy` module deals with the *network devices*. It provides a trait
4for transmitting and receiving frames, [Device](trait.Device.html)
5and implementations of it:
6
7  * the [_loopback_](struct.Loopback.html), for zero dependency testing;
8  * _middleware_ [Tracer](struct.Tracer.html) and
9    [FaultInjector](struct.FaultInjector.html), to facilitate debugging;
10  * _adapters_ [RawSocket](struct.RawSocket.html) and
11    [TunTapInterface](struct.TunTapInterface.html), to transmit and receive frames
12    on the host OS.
13*/
14#![cfg_attr(
15    feature = "medium-ethernet",
16    doc = r##"
17# Examples
18
19An implementation of the [Device](trait.Device.html) trait for a simple hardware
20Ethernet controller could look as follows:
21
22```rust
23use smoltcp::phy::{self, DeviceCapabilities, Device, Medium};
24use smoltcp::time::Instant;
25
26struct StmPhy {
27    rx_buffer: [u8; 1536],
28    tx_buffer: [u8; 1536],
29}
30
31impl<'a> StmPhy {
32    fn new() -> StmPhy {
33        StmPhy {
34            rx_buffer: [0; 1536],
35            tx_buffer: [0; 1536],
36        }
37    }
38}
39
40impl phy::Device for StmPhy {
41    type RxToken<'a> = StmPhyRxToken<'a> where Self: 'a;
42    type TxToken<'a> = StmPhyTxToken<'a> where Self: 'a;
43
44    fn receive(&mut self, _timestamp: Instant) -> Option<(Self::RxToken<'_>, Self::TxToken<'_>)> {
45        Some((StmPhyRxToken(&mut self.rx_buffer[..]),
46              StmPhyTxToken(&mut self.tx_buffer[..])))
47    }
48
49    fn transmit(&mut self, _timestamp: Instant) -> Option<Self::TxToken<'_>> {
50        Some(StmPhyTxToken(&mut self.tx_buffer[..]))
51    }
52
53    fn capabilities(&self) -> DeviceCapabilities {
54        let mut caps = DeviceCapabilities::default();
55        caps.max_transmission_unit = 1536;
56        caps.max_burst_size = Some(1);
57        caps.medium = Medium::Ethernet;
58        caps
59    }
60}
61
62struct StmPhyRxToken<'a>(&'a mut [u8]);
63
64impl<'a> phy::RxToken for StmPhyRxToken<'a> {
65    fn consume<R, F>(mut self, f: F) -> R
66        where F: FnOnce(&mut [u8]) -> R
67    {
68        // TODO: receive packet into buffer
69        let result = f(&mut self.0);
70        println!("rx called");
71        result
72    }
73}
74
75struct StmPhyTxToken<'a>(&'a mut [u8]);
76
77impl<'a> phy::TxToken for StmPhyTxToken<'a> {
78    fn consume<R, F>(self, len: usize, f: F) -> R
79        where F: FnOnce(&mut [u8]) -> R
80    {
81        let result = f(&mut self.0[..len]);
82        println!("tx called {}", len);
83        // TODO: send packet out
84        result
85    }
86}
87```
88"##
89)]
90
91use crate::time::Instant;
92
93#[cfg(all(
94    any(feature = "phy-raw_socket", feature = "phy-tuntap_interface"),
95    unix
96))]
97mod sys;
98
99mod fault_injector;
100mod fuzz_injector;
101#[cfg(feature = "alloc")]
102mod loopback;
103mod pcap_writer;
104#[cfg(all(feature = "phy-raw_socket", unix))]
105mod raw_socket;
106mod tracer;
107#[cfg(all(
108    feature = "phy-tuntap_interface",
109    any(target_os = "linux", target_os = "android")
110))]
111mod tuntap_interface;
112
113#[cfg(all(
114    any(feature = "phy-raw_socket", feature = "phy-tuntap_interface"),
115    unix
116))]
117pub use self::sys::wait;
118
119pub use self::fault_injector::FaultInjector;
120pub use self::fuzz_injector::{FuzzInjector, Fuzzer};
121#[cfg(feature = "alloc")]
122pub use self::loopback::Loopback;
123pub use self::pcap_writer::{PcapLinkType, PcapMode, PcapSink, PcapWriter};
124#[cfg(all(feature = "phy-raw_socket", unix))]
125pub use self::raw_socket::RawSocket;
126pub use self::tracer::Tracer;
127#[cfg(all(
128    feature = "phy-tuntap_interface",
129    any(target_os = "linux", target_os = "android")
130))]
131pub use self::tuntap_interface::TunTapInterface;
132
133/// Metadata associated to a packet.
134///
135/// The packet metadata is a set of attributes associated to network packets
136/// as they travel up or down the stack. The metadata is get/set by the
137/// [`Device`] implementations or by the user when sending/receiving packets from a
138/// socket.
139///
140/// Metadata fields are enabled via Cargo features. If no field is enabled, this
141/// struct becomes zero-sized, which allows the compiler to optimize it out as if
142/// the packet metadata mechanism didn't exist at all.
143///
144/// Currently only UDP sockets allow setting/retrieving packet metadata. The metadata
145/// for packets emitted with other sockets will be all default values.
146///
147/// This struct is marked as `#[non_exhaustive]`. This means it is not possible to
148/// create it directly by specifying all fields. You have to instead create it with
149/// default values and then set the fields you want. This makes adding metadata
150/// fields a non-breaking change.
151///
152/// ```rust
153/// let mut meta = smoltcp::phy::PacketMeta::default();
154/// #[cfg(feature = "packetmeta-id")]
155/// {
156///     meta.id = 15;
157/// }
158/// ```
159#[cfg_attr(feature = "defmt", derive(defmt::Format))]
160#[derive(Debug, PartialEq, Eq, Hash, Clone, Copy, Default)]
161#[non_exhaustive]
162pub struct PacketMeta {
163    #[cfg(feature = "packetmeta-id")]
164    pub id: u32,
165}
166
167/// A description of checksum behavior for a particular protocol.
168#[derive(Debug, Clone, Copy, Default)]
169#[cfg_attr(feature = "defmt", derive(defmt::Format))]
170pub enum Checksum {
171    /// Verify checksum when receiving and compute checksum when sending.
172    #[default]
173    Both,
174    /// Verify checksum when receiving.
175    Rx,
176    /// Compute checksum before sending.
177    Tx,
178    /// Ignore checksum completely.
179    None,
180}
181
182impl Checksum {
183    /// Returns whether checksum should be verified when receiving.
184    pub fn rx(&self) -> bool {
185        match *self {
186            Checksum::Both | Checksum::Rx => true,
187            _ => false,
188        }
189    }
190
191    /// Returns whether checksum should be verified when sending.
192    pub fn tx(&self) -> bool {
193        match *self {
194            Checksum::Both | Checksum::Tx => true,
195            _ => false,
196        }
197    }
198}
199
200/// A description of checksum behavior for every supported protocol.
201#[derive(Debug, Clone, Default)]
202#[cfg_attr(feature = "defmt", derive(defmt::Format))]
203#[non_exhaustive]
204pub struct ChecksumCapabilities {
205    pub ipv4: Checksum,
206    pub udp: Checksum,
207    pub tcp: Checksum,
208    #[cfg(feature = "proto-ipv4")]
209    pub icmpv4: Checksum,
210    #[cfg(feature = "proto-ipv6")]
211    pub icmpv6: Checksum,
212}
213
214impl ChecksumCapabilities {
215    /// Checksum behavior that results in not computing or verifying checksums
216    /// for any of the supported protocols.
217    pub fn ignored() -> Self {
218        ChecksumCapabilities {
219            ipv4: Checksum::None,
220            udp: Checksum::None,
221            tcp: Checksum::None,
222            #[cfg(feature = "proto-ipv4")]
223            icmpv4: Checksum::None,
224            #[cfg(feature = "proto-ipv6")]
225            icmpv6: Checksum::None,
226        }
227    }
228}
229
230/// A description of device capabilities.
231///
232/// Higher-level protocols may achieve higher throughput or lower latency if they consider
233/// the bandwidth or packet size limitations.
234#[derive(Debug, Clone, Default)]
235#[cfg_attr(feature = "defmt", derive(defmt::Format))]
236#[non_exhaustive]
237pub struct DeviceCapabilities {
238    /// Medium of the device.
239    ///
240    /// This indicates what kind of packet the sent/received bytes are, and determines
241    /// some behaviors of Interface. For example, ARP/NDISC address resolution is only done
242    /// for Ethernet mediums.
243    pub medium: Medium,
244
245    /// Maximum transmission unit.
246    ///
247    /// The network device is unable to send or receive frames larger than the value returned
248    /// by this function.
249    ///
250    /// For Ethernet devices, this is the maximum Ethernet frame size, including the Ethernet header (14 octets), but
251    /// *not* including the Ethernet FCS (4 octets). Therefore, Ethernet MTU = IP MTU + 14.
252    ///
253    /// Note that in Linux and other OSes, "MTU" is the IP MTU, not the Ethernet MTU, even for Ethernet
254    /// devices. This is a common source of confusion.
255    ///
256    /// Most common IP MTU is 1500. Minimum is 576 (for IPv4) or 1280 (for IPv6). Maximum is 9216 octets.
257    pub max_transmission_unit: usize,
258
259    /// Maximum burst size, in terms of MTU.
260    ///
261    /// The network device is unable to send or receive bursts large than the value returned
262    /// by this function.
263    ///
264    /// If `None`, there is no fixed limit on burst size, e.g. if network buffers are
265    /// dynamically allocated.
266    pub max_burst_size: Option<usize>,
267
268    /// Checksum behavior.
269    ///
270    /// If the network device is capable of verifying or computing checksums for some protocols,
271    /// it can request that the stack not do so in software to improve performance.
272    pub checksum: ChecksumCapabilities,
273}
274
275impl DeviceCapabilities {
276    pub fn ip_mtu(&self) -> usize {
277        match self.medium {
278            #[cfg(feature = "medium-ethernet")]
279            Medium::Ethernet => {
280                self.max_transmission_unit - crate::wire::EthernetFrame::<&[u8]>::header_len()
281            }
282            #[cfg(feature = "medium-ip")]
283            Medium::Ip => self.max_transmission_unit,
284            #[cfg(feature = "medium-ieee802154")]
285            Medium::Ieee802154 => self.max_transmission_unit, // TODO(thvdveld): what is the MTU for Medium::IEEE802
286        }
287    }
288}
289
290/// Type of medium of a device.
291#[derive(Debug, Eq, PartialEq, Copy, Clone)]
292#[cfg_attr(feature = "defmt", derive(defmt::Format))]
293pub enum Medium {
294    /// Ethernet medium. Devices of this type send and receive Ethernet frames,
295    /// and interfaces using it must do neighbor discovery via ARP or NDISC.
296    ///
297    /// Examples of devices of this type are Ethernet, WiFi (802.11), Linux `tap`, and VPNs in tap (layer 2) mode.
298    #[cfg(feature = "medium-ethernet")]
299    Ethernet,
300
301    /// IP medium. Devices of this type send and receive IP frames, without an
302    /// Ethernet header. MAC addresses are not used, and no neighbor discovery (ARP, NDISC) is done.
303    ///
304    /// Examples of devices of this type are the Linux `tun`, PPP interfaces, VPNs in tun (layer 3) mode.
305    #[cfg(feature = "medium-ip")]
306    Ip,
307
308    #[cfg(feature = "medium-ieee802154")]
309    Ieee802154,
310}
311
312impl Default for Medium {
313    fn default() -> Medium {
314        #[cfg(feature = "medium-ethernet")]
315        return Medium::Ethernet;
316        #[cfg(all(feature = "medium-ip", not(feature = "medium-ethernet")))]
317        return Medium::Ip;
318        #[cfg(all(
319            feature = "medium-ieee802154",
320            not(feature = "medium-ip"),
321            not(feature = "medium-ethernet")
322        ))]
323        return Medium::Ieee802154;
324        #[cfg(all(
325            not(feature = "medium-ip"),
326            not(feature = "medium-ethernet"),
327            not(feature = "medium-ieee802154")
328        ))]
329        return panic!("No medium enabled");
330    }
331}
332
333/// An interface for sending and receiving raw network frames.
334///
335/// The interface is based on _tokens_, which are types that allow to receive/transmit a
336/// single packet. The `receive` and `transmit` functions only construct such tokens, the
337/// real sending/receiving operation are performed when the tokens are consumed.
338pub trait Device {
339    type RxToken<'a>: RxToken
340    where
341        Self: 'a;
342    type TxToken<'a>: TxToken
343    where
344        Self: 'a;
345
346    /// Construct a token pair consisting of one receive token and one transmit token.
347    ///
348    /// The additional transmit token makes it possible to generate a reply packet based
349    /// on the contents of the received packet. For example, this makes it possible to
350    /// handle arbitrarily large ICMP echo ("ping") requests, where the all received bytes
351    /// need to be sent back, without heap allocation.
352    ///
353    /// The timestamp must be a number of milliseconds, monotonically increasing since an
354    /// arbitrary moment in time, such as system startup.
355    fn receive(&mut self, timestamp: Instant) -> Option<(Self::RxToken<'_>, Self::TxToken<'_>)>;
356
357    /// Construct a transmit token.
358    ///
359    /// The timestamp must be a number of milliseconds, monotonically increasing since an
360    /// arbitrary moment in time, such as system startup.
361    fn transmit(&mut self, timestamp: Instant) -> Option<Self::TxToken<'_>>;
362
363    /// Get a description of device capabilities.
364    fn capabilities(&self) -> DeviceCapabilities;
365}
366
367/// A token to receive a single network packet.
368pub trait RxToken {
369    /// Consumes the token to receive a single network packet.
370    ///
371    /// This method receives a packet and then calls the given closure `f` with the raw
372    /// packet bytes as argument.
373    fn consume<R, F>(self, f: F) -> R
374    where
375        F: FnOnce(&mut [u8]) -> R;
376
377    /// The Packet ID associated with the frame received by this [`RxToken`]
378    fn meta(&self) -> PacketMeta {
379        PacketMeta::default()
380    }
381}
382
383/// A token to transmit a single network packet.
384pub trait TxToken {
385    /// Consumes the token to send a single network packet.
386    ///
387    /// This method constructs a transmit buffer of size `len` and calls the passed
388    /// closure `f` with a mutable reference to that buffer. The closure should construct
389    /// a valid network packet (e.g. an ethernet packet) in the buffer. When the closure
390    /// returns, the transmit buffer is sent out.
391    fn consume<R, F>(self, len: usize, f: F) -> R
392    where
393        F: FnOnce(&mut [u8]) -> R;
394
395    /// The Packet ID to be associated with the frame to be transmitted by this [`TxToken`].
396    #[allow(unused_variables)]
397    fn set_meta(&mut self, meta: PacketMeta) {}
398}