volatile/volatile_ref.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
use crate::{
access::{Access, Copyable, ReadOnly, ReadWrite, WriteOnly},
ops::{Ops, VolatileOps},
volatile_ptr::VolatilePtr,
};
use core::{fmt, marker::PhantomData, ptr::NonNull};
/// Volatile pointer type that respects Rust's aliasing rules.
///
/// This pointer type behaves similar to Rust's reference types:
///
/// - it requires exclusive `&mut self` access for mutability
/// - only read-only types implement [`Clone`] and [`Copy`]
/// - [`Send`] and [`Sync`] are implemented if `T: Sync`
///
/// To perform volatile operations on `VolatileRef` types, use the [`as_ptr`][Self::as_ptr]
/// or [`as_mut_ptr`](Self::as_mut_ptr) methods to create a temporary
/// [`VolatilePtr`][crate::VolatilePtr] instance.
///
/// Since not all volatile resources (e.g. memory mapped device registers) are both readable
/// and writable, this type supports limiting the allowed access types through an optional second
/// generic parameter `A` that can be one of `ReadWrite`, `ReadOnly`, or `WriteOnly`. It defaults
/// to `ReadWrite`, which allows all operations.
///
/// The size of this struct is the same as the size of the contained reference.
#[repr(transparent)]
pub struct VolatileRef<'a, T, A = ReadWrite, O = VolatileOps>
where
T: ?Sized,
{
pointer: NonNull<T>,
reference: PhantomData<&'a T>,
access: PhantomData<A>,
ops: PhantomData<O>,
}
/// Constructor functions.
///
/// These functions construct new `VolatileRef` values. While the `new`
/// function creates a `VolatileRef` instance with unrestricted access, there
/// are also functions for creating read-only or write-only instances.
impl<'a, T> VolatileRef<'a, T>
where
T: ?Sized,
{
/// Turns the given pointer into a `VolatileRef`.
///
/// ## Safety
///
/// - The pointer must be properly aligned.
/// - It must be “dereferenceable” in the sense defined in the [`core::ptr`] documentation.
/// - The pointer must point to an initialized instance of T.
/// - You must enforce Rust’s aliasing rules, since the returned lifetime 'a is arbitrarily
/// chosen and does not necessarily reflect the actual lifetime of the data. In particular,
/// while this `VolatileRef` exists, the memory the pointer points to must not get accessed
/// (_read or written_) through any other pointer.
pub unsafe fn new(pointer: NonNull<T>) -> Self {
unsafe { VolatileRef::new_restricted(ReadWrite, pointer) }
}
/// Turns the given pointer into a read-only `VolatileRef`.
///
/// ## Safety
///
/// - The pointer must be properly aligned.
/// - It must be “dereferenceable” in the sense defined in the [`core::ptr`] documentation.
/// - The pointer must point to an initialized instance of T.
/// - You must enforce Rust’s aliasing rules, since the returned lifetime 'a is arbitrarily
/// chosen and does not necessarily reflect the actual lifetime of the data. In particular,
/// while this `VolatileRef` exists, the memory the pointer points to _must not get mutated_.
pub const unsafe fn new_read_only(pointer: NonNull<T>) -> VolatileRef<'a, T, ReadOnly> {
unsafe { Self::new_restricted(ReadOnly, pointer) }
}
/// Turns the given pointer into a `VolatileRef` instance with the given access.
///
/// ## Safety
///
/// - The pointer must be properly aligned.
/// - It must be “dereferenceable” in the sense defined in the [`core::ptr`] documentation.
/// - The pointer must point to an initialized instance of T.
/// - You must enforce Rust’s aliasing rules, since the returned lifetime 'a is arbitrarily
/// chosen and does not necessarily reflect the actual lifetime of the data. In particular,
/// while this `VolatileRef` exists, the memory the pointer points to _must not get mutated_.
/// If the given `access` parameter allows write access, the pointer _must not get read
/// either_ while this `VolatileRef` exists.
pub const unsafe fn new_restricted<A>(access: A, pointer: NonNull<T>) -> VolatileRef<'a, T, A>
where
A: Access,
{
let _ = access;
unsafe { Self::new_generic(pointer) }
}
#[allow(missing_docs)]
pub const unsafe fn new_restricted_with_ops<A, O>(
access: A,
ops: O,
pointer: NonNull<T>,
) -> VolatileRef<'a, T, A, O>
where
A: Access,
O: Ops,
{
let _ = access;
let _ = ops;
unsafe { Self::new_generic(pointer) }
}
/// Creates a `VolatileRef` from the given shared reference.
///
/// **Note:** This function is only intended for testing, not for accessing real volatile
/// data. The reason is that the `&mut T` argument is considered _dereferenceable_ by Rust,
/// so the compiler is allowed to insert non-volatile reads. This might lead to undesired
/// (or even undefined?) behavior when accessing volatile data. So to be safe, only create
/// raw pointers to volatile data and use the [`Self::new`] constructor instead.
pub fn from_ref(reference: &'a T) -> VolatileRef<'a, T, ReadOnly>
where
T: 'a,
{
unsafe { VolatileRef::new_restricted(ReadOnly, reference.into()) }
}
/// Creates a `VolatileRef` from the given mutable reference.
///
/// **Note:** This function is only intended for testing, not for accessing real volatile
/// data. The reason is that the `&mut T` argument is considered _dereferenceable_ by Rust,
/// so the compiler is allowed to insert non-volatile reads. This might lead to undesired
/// (or even undefined?) behavior when accessing volatile data. So to be safe, only create
/// raw pointers to volatile data and use the [`Self::new`] constructor instead.
pub fn from_mut_ref(reference: &'a mut T) -> Self
where
T: 'a,
{
unsafe { VolatileRef::new(reference.into()) }
}
const unsafe fn new_generic<A, O>(pointer: NonNull<T>) -> VolatileRef<'a, T, A, O> {
VolatileRef {
pointer,
reference: PhantomData,
access: PhantomData,
ops: PhantomData,
}
}
}
impl<'a, T, A, O> VolatileRef<'a, T, A, O>
where
T: ?Sized,
{
/// Borrows this `VolatileRef` as a read-only [`VolatilePtr`].
///
/// Use this method to do (partial) volatile reads of the referenced data.
pub fn as_ptr(&self) -> VolatilePtr<'_, T, A::RestrictShared, O>
where
A: Access,
{
unsafe { VolatilePtr::new_generic(self.pointer) }
}
/// Borrows this `VolatileRef` as a mutable [`VolatilePtr`].
///
/// Use this method to do (partial) volatile reads or writes of the referenced data.
pub fn as_mut_ptr(&mut self) -> VolatilePtr<'_, T, A, O>
where
A: Access,
{
unsafe { VolatilePtr::new_generic(self.pointer) }
}
/// Converts this `VolatileRef` into a [`VolatilePtr`] with full access without shortening
/// the lifetime.
///
/// Use this method when you need a [`VolatilePtr`] instance that lives for the full
/// lifetime `'a`.
///
/// This method consumes the `VolatileRef`.
pub fn into_ptr(self) -> VolatilePtr<'a, T, A>
where
A: Access,
{
unsafe { VolatilePtr::new_restricted(Default::default(), self.pointer) }
}
}
/// Methods for restricting access.
impl<'a, T> VolatileRef<'a, T, ReadWrite>
where
T: ?Sized,
{
/// Restricts access permissions to read-only.
///
/// ## Example
///
/// ```
/// use volatile::VolatileRef;
/// use core::ptr::NonNull;
///
/// let mut value: i16 = -4;
/// let mut volatile = VolatileRef::from_mut_ref(&mut value);
///
/// let read_only = volatile.read_only();
/// assert_eq!(read_only.as_ptr().read(), -4);
/// // read_only.as_ptr().write(10); // compile-time error
/// ```
pub fn read_only(self) -> VolatileRef<'a, T, ReadOnly> {
unsafe { VolatileRef::new_restricted(ReadOnly, self.pointer) }
}
/// Restricts access permissions to write-only.
///
/// ## Example
///
/// Creating a write-only reference to a struct field:
///
/// ```
/// use volatile::{VolatileRef};
/// use core::ptr::NonNull;
///
/// #[derive(Clone, Copy)]
/// struct Example { field_1: u32, field_2: u8, }
/// let mut value = Example { field_1: 15, field_2: 255 };
/// let mut volatile = VolatileRef::from_mut_ref(&mut value);
///
/// let write_only = volatile.write_only();
/// // write_only.as_ptr().read(); // compile-time error
/// ```
pub fn write_only(self) -> VolatileRef<'a, T, WriteOnly> {
unsafe { VolatileRef::new_restricted(WriteOnly, self.pointer) }
}
}
impl<'a, T, A, O> Clone for VolatileRef<'a, T, A, O>
where
T: ?Sized,
A: Access + Copyable,
O: Ops,
{
fn clone(&self) -> Self {
Self {
pointer: self.pointer,
reference: self.reference,
access: self.access,
ops: self.ops,
}
}
}
impl<'a, T, A, O> Copy for VolatileRef<'a, T, A, O>
where
T: ?Sized,
A: Access + Copyable,
O: Ops,
{
}
unsafe impl<T, A, O> Send for VolatileRef<'_, T, A, O> where T: Sync + ?Sized {}
unsafe impl<T, A, O> Sync for VolatileRef<'_, T, A, O> where T: Sync + ?Sized {}
impl<T, A, O> fmt::Debug for VolatileRef<'_, T, A, O>
where
T: ?Sized,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("VolatileRef")
.field("pointer", &self.pointer)
.field("access", &self.access)
.finish()
}
}