tock_registers/interfaces.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Interfaces (traits) to register types
//!
//! This module contains traits which reflect standardized interfaces
//! to different types of registers. Examples of registers
//! implementing these interfaces are [`ReadWrite`](crate::registers::ReadWrite) or
//! [`InMemoryRegister`](crate::registers::InMemoryRegister).
//!
//! Each trait has two associated type parameters, namely:
//!
//! - `T`: [`UIntLike`](crate::UIntLike), indicating the underlying
//! integer type used to represent the register's raw contents.
//!
//! - `R`: [`RegisterLongName`](crate::RegisterLongName), functioning
//! as a type to identify this register's descriptive name and
//! semantic meaning. It is further used to impose type constraints
//! on values passed through the API, such as
//! [`FieldValue`](crate::fields::FieldValue).
//!
//! Registers can have different access levels, which are mapped to
//! different traits respectively:
//!
//! - [`Readable`]: indicates that the current value of this register
//! can be read. Implementations will need to provide the
//! [`get`](crate::interfaces::Readable::get) method.
//!
//! - [`Writeable`]: indicates that the value of this register can be
//! set. Implementations will need to provide the
//! [`set`](crate::interfaces::Writeable::set) method.
//!
//! - [`ReadWriteable`]: indicates that this register can be
//! _modified_. It is not sufficient for registers to be both read-
//! and writable, they must also have the same semantic meaning when
//! read from and written to. This is not true in general, for
//! example a memory-mapped UART register might transmit when
//! writing and receive when reading.
//!
//! If a type implements both [`Readable`] and [`Writeable`], and
//! the associated [`RegisterLongName`](crate::RegisterLongName)
//! type parameters are identical, it will automatically implement
//! [`ReadWriteable`]. In particular, for
//! [`Aliased`](crate::registers::Aliased) this is -- in general --
//! not the case, so
//!
//! ```rust
//! # use tock_registers::interfaces::{Readable, Writeable, ReadWriteable};
//! # use tock_registers::registers::ReadWrite;
//! # use tock_registers::register_bitfields;
//! register_bitfields![u8,
//! A [
//! DUMMY OFFSET(0) NUMBITS(1) [],
//! ],
//! ];
//! let read_write_reg: &ReadWrite<u8, A::Register> = unsafe {
//! core::mem::transmute(Box::leak(Box::new(0_u8)))
//! };
//! ReadWriteable::modify(read_write_reg, A::DUMMY::SET);
//! ```
//!
//! works, but not
//!
//! ```compile_fail
//! # use tock_registers::interfaces::{Readable, Writeable, ReadWriteable};
//! # use tock_registers::registers::Aliased;
//! # use tock_registers::register_bitfields;
//! register_bitfields![u8,
//! A [
//! DUMMY OFFSET(0) NUMBITS(1) [],
//! ],
//! B [
//! DUMMY OFFSET(0) NUMBITS(1) [],
//! ],
//! ];
//! let aliased_reg: &Aliased<u8, A::Register, B::Register> = unsafe {
//! core::mem::transmute(Box::leak(Box::new(0_u8)))
//! };
//! ReadWriteable::modify(aliased_reg, A::DUMMY::SET);
//! ```
//!
//! ## Example: implementing a custom register type
//!
//! These traits can be used to implement custom register types, which
//! are compatible to the ones shipped in this crate. For example, to
//! define a register which sets a `u8` value using a Cell reference,
//! always reads the bitwise-negated vale and prints every written
//! value to the console:
//!
//! ```rust
//! # use core::cell::Cell;
//! # use core::marker::PhantomData;
//! #
//! # use tock_registers::interfaces::{Readable, Writeable, ReadWriteable};
//! # use tock_registers::RegisterLongName;
//! # use tock_registers::register_bitfields;
//! #
//! struct DummyRegister<'a, R: RegisterLongName> {
//! cell_ref: &'a Cell<u8>,
//! _register_long_name: PhantomData<R>,
//! }
//!
//! impl<'a, R: RegisterLongName> Readable for DummyRegister<'a, R> {
//! type T = u8;
//! type R = R;
//!
//! fn get(&self) -> u8 {
//! // Return the bitwise-inverse of the current value
//! !self.cell_ref.get()
//! }
//! }
//!
//! impl<'a, R: RegisterLongName> Writeable for DummyRegister<'a, R> {
//! type T = u8;
//! type R = R;
//!
//! fn set(&self, value: u8) {
//! println!("Setting Cell to {:02x?}!", value);
//! self.cell_ref.set(value);
//! }
//! }
//!
//! register_bitfields![u8,
//! DummyReg [
//! HIGH OFFSET(4) NUMBITS(4) [
//! A = 0b0001,
//! B = 0b0010,
//! C = 0b0100,
//! D = 0b1000,
//! ],
//! LOW OFFSET(0) NUMBITS(4) [],
//! ],
//! ];
//!
//! // Create a new DummyRegister over some Cell<u8>
//! let cell = Cell::new(0);
//! let dummy = DummyRegister {
//! cell_ref: &cell,
//! _register_long_name: PhantomData,
//! };
//!
//! // Set a value and read it back. This demonstrates the raw getters
//! // and setters of Writeable and Readable
//! dummy.set(0xFA);
//! assert!(dummy.get() == 0x05);
//!
//! // Use some of the automatically derived APIs, such as
//! // ReadWriteable::modify and Readable::read
//! dummy.modify(DummyReg::HIGH::C);
//! assert!(dummy.read(DummyReg::HIGH) == 0xb);
//! ```
use crate::fields::{Field, FieldValue, TryFromValue};
use crate::{LocalRegisterCopy, RegisterLongName, UIntLike};
/// Readable register
///
/// Register which at least supports reading the current value. Only
/// [`Readable::get`] must be implemented, as for other methods a
/// default implementation is provided.
///
/// A register that is both [`Readable`] and [`Writeable`] will also
/// automatically be [`ReadWriteable`], if the [`RegisterLongName`] of
/// [`Readable`] is the same as that of [`Writeable`] (i.e. not for
/// [`Aliased`](crate::registers::Aliased) registers).
pub trait Readable {
type T: UIntLike;
type R: RegisterLongName;
/// Get the raw register value
fn get(&self) -> Self::T;
#[inline]
/// Read the value of the given field
fn read(&self, field: Field<Self::T, Self::R>) -> Self::T {
field.read(self.get())
}
/// Set the raw register value
///
/// The [`register_bitfields!`](crate::register_bitfields) macro will
/// generate an enum containing the various named field variants and
/// implementing the required [`TryFromValue`] trait. It is accessible as
/// `$REGISTER_NAME::$FIELD_NAME::Value`.
///
/// This method can be useful to symbolically represent read register field
/// states throughout the codebase and to enforce exhaustive matches over
/// all defined valid register field values.
///
/// ## Usage Example
///
/// ```rust
/// # use tock_registers::interfaces::Readable;
/// # use tock_registers::registers::InMemoryRegister;
/// # use tock_registers::register_bitfields;
/// register_bitfields![u8,
/// EXAMPLEREG [
/// TESTFIELD OFFSET(0) NUMBITS(2) [
/// Foo = 0,
/// Bar = 1,
/// Baz = 2,
/// ],
/// ],
/// ];
///
/// let reg: InMemoryRegister<u8, EXAMPLEREG::Register> =
/// InMemoryRegister::new(2);
///
/// match reg.read_as_enum(EXAMPLEREG::TESTFIELD) {
/// Some(EXAMPLEREG::TESTFIELD::Value::Foo) => "Tock",
/// Some(EXAMPLEREG::TESTFIELD::Value::Bar) => "is",
/// Some(EXAMPLEREG::TESTFIELD::Value::Baz) => "awesome!",
/// None => panic!("boo!"),
/// };
/// ```
#[inline]
fn read_as_enum<E: TryFromValue<Self::T, EnumType = E>>(
&self,
field: Field<Self::T, Self::R>,
) -> Option<E> {
field.read_as_enum(self.get())
}
#[inline]
/// Make a local copy of the register
fn extract(&self) -> LocalRegisterCopy<Self::T, Self::R> {
LocalRegisterCopy::new(self.get())
}
#[inline]
/// Check if one or more bits in a field are set
fn is_set(&self, field: Field<Self::T, Self::R>) -> bool {
field.is_set(self.get())
}
/// Check if any bits corresponding to the mask in the passed `FieldValue` are set.
/// This function is identical to `is_set()` but operates on a `FieldValue` rather
/// than a `Field`, allowing for checking if any bits are set across multiple,
/// non-contiguous portions of a bitfield.
#[inline]
fn any_matching_bits_set(&self, field: FieldValue<Self::T, Self::R>) -> bool {
field.any_matching_bits_set(self.get())
}
#[inline]
/// Check if all specified parts of a field match
fn matches_all(&self, field: FieldValue<Self::T, Self::R>) -> bool {
field.matches_all(self.get())
}
/// Check if any of the passed parts of a field exactly match the contained
/// value. This allows for matching on unset bits, or matching on specific values
/// in multi-bit fields.
#[inline]
fn matches_any(&self, fields: &[FieldValue<Self::T, Self::R>]) -> bool {
fields
.iter()
.any(|field| self.get() & field.mask() == field.value)
}
}
/// Writeable register
///
/// Register which at least supports setting a value. Only
/// [`Writeable::set`] must be implemented, as for other methods a
/// default implementation is provided.
///
/// A register that is both [`Readable`] and [`Writeable`] will also
/// automatically be [`ReadWriteable`], if the [`RegisterLongName`] of
/// [`Readable`] is the same as that of [`Writeable`] (i.e. not for
/// [`Aliased`](crate::registers::Aliased) registers).
pub trait Writeable {
type T: UIntLike;
type R: RegisterLongName;
/// Set the raw register value
fn set(&self, value: Self::T);
#[inline]
/// Write the value of one or more fields, overwriting the other fields with zero
fn write(&self, field: FieldValue<Self::T, Self::R>) {
self.set(field.value);
}
#[inline]
/// Write the value of one or more fields, maintaining the value of unchanged fields via a
/// provided original value, rather than a register read.
fn modify_no_read(
&self,
original: LocalRegisterCopy<Self::T, Self::R>,
field: FieldValue<Self::T, Self::R>,
) {
self.set(field.modify(original.get()));
}
}
/// [`Readable`] and [`Writeable`] register, over the same
/// [`RegisterLongName`]
///
/// Register which supports both reading and setting a value.
///
/// **This trait does not have to be implemented manually!** It is
/// automatically implemented for every type that is both [`Readable`]
/// and [`Writeable`], as long as [`Readable::R`] == [`Writeable::R`]
/// (i.e. not for [`Aliased`](crate::registers::Aliased) registers).
pub trait ReadWriteable {
type T: UIntLike;
type R: RegisterLongName;
/// Write the value of one or more fields, leaving the other fields unchanged
fn modify(&self, field: FieldValue<Self::T, Self::R>);
}
impl<T: UIntLike, R: RegisterLongName, S> ReadWriteable for S
where
S: Readable<T = T, R = R> + Writeable<T = T, R = R>,
{
type T = T;
type R = R;
#[inline]
fn modify(&self, field: FieldValue<Self::T, Self::R>) {
self.set(field.modify(self.get()));
}
}