zerocopy/util/macros.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
// Copyright 2023 The Fuchsia Authors
//
// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
// This file may not be copied, modified, or distributed except according to
// those terms.
/// Documents multiple unsafe blocks with a single safety comment.
///
/// Invoked as:
///
/// ```rust,ignore
/// safety_comment! {
/// // Non-doc comments come first.
/// /// SAFETY:
/// /// Safety comment starts on its own line.
/// macro_1!(args);
/// macro_2! { args };
/// /// SAFETY:
/// /// Subsequent safety comments are allowed but not required.
/// macro_3! { args };
/// }
/// ```
///
/// The macro invocations are emitted, each decorated with the following
/// attribute: `#[allow(clippy::undocumented_unsafe_blocks)]`.
macro_rules! safety_comment {
(#[doc = r" SAFETY:"] $($(#[$attr:meta])* $macro:ident!$args:tt;)*) => {
#[allow(clippy::undocumented_unsafe_blocks, unused_attributes)]
const _: () = { $($(#[$attr])* $macro!$args;)* };
}
}
/// Unsafely implements trait(s) for a type.
///
/// # Safety
///
/// The trait impl must be sound.
///
/// When implementing `TryFromBytes`:
/// - If no `is_bit_valid` impl is provided, then it must be valid for
/// `is_bit_valid` to unconditionally return `true`. In other words, it must
/// be the case that any initialized sequence of bytes constitutes a valid
/// instance of `$ty`.
/// - If an `is_bit_valid` impl is provided, then:
/// - Regardless of whether the provided closure takes a `Ptr<$repr>` or
/// `&$repr` argument, if `$ty` and `$repr` are different types, then it
/// must be the case that, given `t: *mut $ty` and `let r = t as *mut
/// $repr`:
/// - `r` refers to an object of equal or lesser size than the object
/// referred to by `t`.
/// - `r` refers to an object with `UnsafeCell`s at the same byte ranges as
/// the object referred to by `t`.
/// - If the provided closure takes a `&$repr` argument, then given a `Ptr<'a,
/// $ty>` which satisfies the preconditions of
/// `TryFromBytes::<$ty>::is_bit_valid`, it must be guaranteed that the
/// memory referenced by that `Ptr` always contains a valid `$repr`.
/// - The impl of `is_bit_valid` must only return `true` for its argument
/// `Ptr<$repr>` if the original `Ptr<$ty>` refers to a valid `$ty`.
macro_rules! unsafe_impl {
// Implement `$trait` for `$ty` with no bounds.
($(#[$attr:meta])* $ty:ty: $trait:ident $(; |$candidate:ident: MaybeAligned<$repr:ty>| $is_bit_valid:expr)?) => {
$(#[$attr])*
unsafe impl $trait for $ty {
unsafe_impl!(@method $trait $(; |$candidate: MaybeAligned<$repr>| $is_bit_valid)?);
}
};
// Implement all `$traits` for `$ty` with no bounds.
($ty:ty: $($traits:ident),*) => {
$( unsafe_impl!($ty: $traits); )*
};
// This arm is identical to the following one, except it contains a
// preceding `const`. If we attempt to handle these with a single arm, there
// is an inherent ambiguity between `const` (the keyword) and `const` (the
// ident match for `$tyvar:ident`).
//
// To explain how this works, consider the following invocation:
//
// unsafe_impl!(const N: usize, T: ?Sized + Copy => Clone for Foo<T>);
//
// In this invocation, here are the assignments to meta-variables:
//
// |---------------|------------|
// | Meta-variable | Assignment |
// |---------------|------------|
// | $constname | N |
// | $constty | usize |
// | $tyvar | T |
// | $optbound | Sized |
// | $bound | Copy |
// | $trait | Clone |
// | $ty | Foo<T> |
// |---------------|------------|
//
// The following arm has the same behavior with the exception of the lack of
// support for a leading `const` parameter.
(
$(#[$attr:meta])*
const $constname:ident : $constty:ident $(,)?
$($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?),*
=> $trait:ident for $ty:ty $(; |$candidate:ident $(: MaybeAligned<$ref_repr:ty>)? $(: Maybe<$ptr_repr:ty>)?| $is_bit_valid:expr)?
) => {
unsafe_impl!(
@inner
$(#[$attr])*
@const $constname: $constty,
$($tyvar $(: $(? $optbound +)* + $($bound +)*)?,)*
=> $trait for $ty $(; |$candidate $(: MaybeAligned<$ref_repr>)? $(: Maybe<$ptr_repr>)?| $is_bit_valid)?
);
};
(
$(#[$attr:meta])*
$($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?),*
=> $trait:ident for $ty:ty $(; |$candidate:ident $(: MaybeAligned<$ref_repr:ty>)? $(: Maybe<$ptr_repr:ty>)?| $is_bit_valid:expr)?
) => {
unsafe_impl!(
@inner
$(#[$attr])*
$($tyvar $(: $(? $optbound +)* + $($bound +)*)?,)*
=> $trait for $ty $(; |$candidate $(: MaybeAligned<$ref_repr>)? $(: Maybe<$ptr_repr>)?| $is_bit_valid)?
);
};
(
@inner
$(#[$attr:meta])*
$(@const $constname:ident : $constty:ident,)*
$($tyvar:ident $(: $(? $optbound:ident +)* + $($bound:ident +)* )?,)*
=> $trait:ident for $ty:ty $(; |$candidate:ident $(: MaybeAligned<$ref_repr:ty>)? $(: Maybe<$ptr_repr:ty>)?| $is_bit_valid:expr)?
) => {
$(#[$attr])*
#[allow(non_local_definitions)]
unsafe impl<$($tyvar $(: $(? $optbound +)* $($bound +)*)?),* $(, const $constname: $constty,)*> $trait for $ty {
unsafe_impl!(@method $trait $(; |$candidate: $(MaybeAligned<$ref_repr>)? $(Maybe<$ptr_repr>)?| $is_bit_valid)?);
}
};
(@method TryFromBytes ; |$candidate:ident: MaybeAligned<$repr:ty>| $is_bit_valid:expr) => {
#[allow(clippy::missing_inline_in_public_items)]
#[cfg_attr(coverage_nightly, coverage(off))]
fn only_derive_is_allowed_to_implement_this_trait() {}
#[inline]
fn is_bit_valid<AA: invariant::Aliasing + invariant::AtLeast<invariant::Shared>>(candidate: Maybe<'_, Self, AA>) -> bool {
// SAFETY:
// - The cast preserves address. The caller has promised that the
// cast results in an object of equal or lesser size, and so the
// cast returns a pointer which references a subset of the bytes
// of `p`.
// - The cast preserves provenance.
// - The caller has promised that the destination type has
// `UnsafeCell`s at the same byte ranges as the source type.
#[allow(clippy::as_conversions)]
let candidate = unsafe { candidate.cast_unsized::<$repr, _>(|p| p as *mut _) };
// SAFETY: The caller has promised that the referenced memory region
// will contain a valid `$repr`.
let $candidate = unsafe { candidate.assume_validity::<crate::pointer::invariant::Valid>() };
$is_bit_valid
}
};
(@method TryFromBytes ; |$candidate:ident: Maybe<$repr:ty>| $is_bit_valid:expr) => {
#[allow(clippy::missing_inline_in_public_items)]
#[cfg_attr(coverage_nightly, coverage(off))]
fn only_derive_is_allowed_to_implement_this_trait() {}
#[inline]
fn is_bit_valid<AA: invariant::Aliasing + invariant::AtLeast<invariant::Shared>>(candidate: Maybe<'_, Self, AA>) -> bool {
// SAFETY:
// - The cast preserves address. The caller has promised that the
// cast results in an object of equal or lesser size, and so the
// cast returns a pointer which references a subset of the bytes
// of `p`.
// - The cast preserves provenance.
// - The caller has promised that the destination type has
// `UnsafeCell`s at the same byte ranges as the source type.
#[allow(clippy::as_conversions)]
let $candidate = unsafe { candidate.cast_unsized::<$repr, _>(|p| p as *mut _) };
// Restore the invariant that the referent bytes are initialized.
// SAFETY: The above cast does not uninitialize any referent bytes;
// they remain initialized.
let $candidate = unsafe { $candidate.assume_validity::<crate::pointer::invariant::Initialized>() };
$is_bit_valid
}
};
(@method TryFromBytes) => {
#[allow(clippy::missing_inline_in_public_items)]
#[cfg_attr(coverage_nightly, coverage(off))]
fn only_derive_is_allowed_to_implement_this_trait() {}
#[inline(always)] fn is_bit_valid<A: invariant::Aliasing + invariant::AtLeast<invariant::Shared>>(_: Maybe<'_, Self, A>) -> bool { true }
};
(@method $trait:ident) => {
#[allow(clippy::missing_inline_in_public_items)]
#[cfg_attr(coverage_nightly, coverage(off))]
fn only_derive_is_allowed_to_implement_this_trait() {}
};
(@method $trait:ident; |$_candidate:ident $(: &$_ref_repr:ty)? $(: NonNull<$_ptr_repr:ty>)?| $_is_bit_valid:expr) => {
compile_error!("Can't provide `is_bit_valid` impl for trait other than `TryFromBytes`");
};
}
/// Implements `$trait` for a type which implements `TransparentWrapper`.
///
/// Calling this macro is safe; the internals of the macro emit appropriate
/// trait bounds which ensure that the given impl is sound.
macro_rules! impl_for_transparent_wrapper {
(
$(#[$attr:meta])*
$($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?)?
=> $trait:ident for $ty:ty $(; |$candidate:ident $(: MaybeAligned<$ref_repr:ty>)? $(: Maybe<$ptr_repr:ty>)?| $is_bit_valid:expr)?
) => {
$(#[$attr])*
#[allow(non_local_definitions)]
// This block implements `$trait` for `$ty` under the following
// conditions:
// - `$ty: TransparentWrapper`
// - `$ty::Inner: $trait`
// - For some `Xxx`, `$ty::XxxVariance = Covariant` (`Xxx` is determined
// by the `@define_is_transparent_wrapper` macro arms). This bound
// ensures that some layout property is the same between `$ty` and
// `$ty::Inner`. Which layout property this is depends on the trait
// being implemented (for example, `FromBytes` is not concerned with
// alignment, but is concerned with bit validity).
//
// In other words, `$ty` is guaranteed to soundly implement `$trait`
// because some property of its layout is the same as `$ty::Inner`,
// which implements `$trait`. Most of the complexity in this macro is to
// ensure that the above-mentioned conditions are actually met, and that
// the proper variance (ie, the proper layout property) is chosen.
// SAFETY:
// - `is_transparent_wrapper<I, W>` requires:
// - `W: TransparentWrapper<I>`
// - `W::Inner: $trait`
// - `f` is generic over `I: Invariants`, and in its body, calls
// `is_transparent_wrapper::<I, $ty>()`. Thus, this code will only
// compile if, for all `I: Invariants`:
// - `$ty: TransparentWrapper<I>`
// - `$ty::Inner: $trait`
//
// These two facts - that `$ty: TransparentWrapper<I>` and that
// `$ty::Inner: $trait` - are the preconditions to the full safety
// proofs, which are completed below in the
// `@define_is_transparent_wrapper` macro arms. The safety proof is
// slightly different for each trait.
unsafe impl<$($tyvar $(: $(? $optbound +)* $($bound +)*)?)?> $trait for $ty {
#[allow(dead_code, clippy::missing_inline_in_public_items)]
#[cfg_attr(coverage_nightly, coverage(off))]
fn only_derive_is_allowed_to_implement_this_trait() {
use crate::{pointer::invariant::Invariants, util::*};
impl_for_transparent_wrapper!(@define_is_transparent_wrapper $trait);
#[cfg_attr(coverage_nightly, coverage(off))]
fn f<I: Invariants, $($tyvar $(: $(? $optbound +)* $($bound +)*)?)?>() {
is_transparent_wrapper::<I, $ty>();
}
}
impl_for_transparent_wrapper!(
@is_bit_valid
$(<$tyvar $(: $(? $optbound +)* $($bound +)*)?>)?
$trait for $ty
);
}
};
(@define_is_transparent_wrapper Immutable) => {
// SAFETY: `W: TransparentWrapper<UnsafeCellVariance = Covariant>`
// requires that `W` has `UnsafeCell`s at the same byte offsets as
// `W::Inner`. `W::Inner: Immutable` implies that `W::Inner` does not
// contain any `UnsafeCell`s, and so `W` does not contain any
// `UnsafeCell`s. Since `W = $ty`, `$ty` can soundly implement
// `Immutable`.
impl_for_transparent_wrapper!(@define_is_transparent_wrapper Immutable, UnsafeCellVariance)
};
(@define_is_transparent_wrapper FromZeros) => {
// SAFETY: `W: TransparentWrapper<ValidityVariance = Covariant>`
// requires that `W` has the same bit validity as `W::Inner`. `W::Inner:
// FromZeros` implies that the all-zeros bit pattern is a bit-valid
// instance of `W::Inner`, and so the all-zeros bit pattern is a
// bit-valid instance of `W`. Since `W = $ty`, `$ty` can soundly
// implement `FromZeros`.
impl_for_transparent_wrapper!(@define_is_transparent_wrapper FromZeros, ValidityVariance)
};
(@define_is_transparent_wrapper FromBytes) => {
// SAFETY: `W: TransparentWrapper<ValidityVariance = Covariant>`
// requires that `W` has the same bit validity as `W::Inner`. `W::Inner:
// FromBytes` implies that any initialized bit pattern is a bit-valid
// instance of `W::Inner`, and so any initialized bit pattern is a
// bit-valid instance of `W`. Since `W = $ty`, `$ty` can soundly
// implement `FromBytes`.
impl_for_transparent_wrapper!(@define_is_transparent_wrapper FromBytes, ValidityVariance)
};
(@define_is_transparent_wrapper IntoBytes) => {
// SAFETY: `W: TransparentWrapper<ValidityVariance = Covariant>`
// requires that `W` has the same bit validity as `W::Inner`. `W::Inner:
// IntoBytes` implies that no bit-valid instance of `W::Inner` contains
// uninitialized bytes, and so no bit-valid instance of `W` contains
// uninitialized bytes. Since `W = $ty`, `$ty` can soundly implement
// `IntoBytes`.
impl_for_transparent_wrapper!(@define_is_transparent_wrapper IntoBytes, ValidityVariance)
};
(@define_is_transparent_wrapper Unaligned) => {
// SAFETY: `W: TransparentWrapper<AlignmentVariance = Covariant>`
// requires that `W` has the same alignment as `W::Inner`. `W::Inner:
// Unaligned` implies `W::Inner`'s alignment is 1, and so `W`'s
// alignment is 1. Since `W = $ty`, `W` can soundly implement
// `Unaligned`.
impl_for_transparent_wrapper!(@define_is_transparent_wrapper Unaligned, AlignmentVariance)
};
(@define_is_transparent_wrapper TryFromBytes) => {
// SAFETY: `W: TransparentWrapper<ValidityVariance = Covariant>`
// requires that `W` has the same bit validity as `W::Inner`. `W::Inner:
// TryFromBytes` implies that `<W::Inner as
// TryFromBytes>::is_bit_valid(c)` only returns `true` if `c` references
// a bit-valid instance of `W::Inner`. Thus, `<W::Inner as
// TryFromBytes>::is_bit_valid(c)` only returns `true` if `c` references
// a bit-valid instance of `W`. Below, we implement `<W as
// TryFromBytes>::is_bit_valid` by deferring to `<W::Inner as
// TryFromBytes>::is_bit_valid`. Since `W = $ty`, it is sound for `$ty`
// to implement `TryFromBytes` with this implementation of
// `is_bit_valid`.
impl_for_transparent_wrapper!(@define_is_transparent_wrapper TryFromBytes, ValidityVariance)
};
(@define_is_transparent_wrapper $trait:ident, $variance:ident) => {
#[cfg_attr(coverage_nightly, coverage(off))]
fn is_transparent_wrapper<I: Invariants, W: TransparentWrapper<I, $variance = Covariant> + ?Sized>()
where
W::Inner: $trait,
{}
};
(
@is_bit_valid
$(<$tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?>)?
TryFromBytes for $ty:ty
) => {
// SAFETY: See safety comment in `(@define_is_transparent_wrapper
// TryFromBytes)` macro arm for an explanation of why this is a sound
// implementation of `is_bit_valid`.
#[inline]
fn is_bit_valid<A: crate::pointer::invariant::Aliasing + crate::pointer::invariant::AtLeast<invariant::Shared>>(candidate: Maybe<'_, Self, A>) -> bool {
TryFromBytes::is_bit_valid(candidate.transparent_wrapper_into_inner())
}
};
(
@is_bit_valid
$(<$tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?>)?
$trait:ident for $ty:ty
) => {
// Trait other than `TryFromBytes`; no `is_bit_valid` impl.
};
}
/// Implements a trait for a type, bounding on each memeber of the power set of
/// a set of type variables. This is useful for implementing traits for tuples
/// or `fn` types.
///
/// The last argument is the name of a macro which will be called in every
/// `impl` block, and is expected to expand to the name of the type for which to
/// implement the trait.
///
/// For example, the invocation:
/// ```ignore
/// unsafe_impl_for_power_set!(A, B => Foo for type!(...))
/// ```
/// ...expands to:
/// ```ignore
/// unsafe impl Foo for type!() { ... }
/// unsafe impl<B> Foo for type!(B) { ... }
/// unsafe impl<A, B> Foo for type!(A, B) { ... }
/// ```
macro_rules! unsafe_impl_for_power_set {
(
$first:ident $(, $rest:ident)* $(-> $ret:ident)? => $trait:ident for $macro:ident!(...)
$(; |$candidate:ident $(: MaybeAligned<$ref_repr:ty>)? $(: Maybe<$ptr_repr:ty>)?| $is_bit_valid:expr)?
) => {
unsafe_impl_for_power_set!(
$($rest),* $(-> $ret)? => $trait for $macro!(...)
$(; |$candidate $(: MaybeAligned<$ref_repr>)? $(: Maybe<$ptr_repr>)?| $is_bit_valid)?
);
unsafe_impl_for_power_set!(
@impl $first $(, $rest)* $(-> $ret)? => $trait for $macro!(...)
$(; |$candidate $(: MaybeAligned<$ref_repr>)? $(: Maybe<$ptr_repr>)?| $is_bit_valid)?
);
};
(
$(-> $ret:ident)? => $trait:ident for $macro:ident!(...)
$(; |$candidate:ident $(: MaybeAligned<$ref_repr:ty>)? $(: Maybe<$ptr_repr:ty>)?| $is_bit_valid:expr)?
) => {
unsafe_impl_for_power_set!(
@impl $(-> $ret)? => $trait for $macro!(...)
$(; |$candidate $(: MaybeAligned<$ref_repr>)? $(: Maybe<$ptr_repr>)?| $is_bit_valid)?
);
};
(
@impl $($vars:ident),* $(-> $ret:ident)? => $trait:ident for $macro:ident!(...)
$(; |$candidate:ident $(: MaybeAligned<$ref_repr:ty>)? $(: Maybe<$ptr_repr:ty>)?| $is_bit_valid:expr)?
) => {
unsafe_impl!(
$($vars,)* $($ret)? => $trait for $macro!($($vars),* $(-> $ret)?)
$(; |$candidate $(: MaybeAligned<$ref_repr>)? $(: Maybe<$ptr_repr>)?| $is_bit_valid)?
);
};
}
/// Expands to an `Option<extern "C" fn>` type with the given argument types and
/// return type. Designed for use with `unsafe_impl_for_power_set`.
macro_rules! opt_extern_c_fn {
($($args:ident),* -> $ret:ident) => { Option<extern "C" fn($($args),*) -> $ret> };
}
/// Expands to a `Option<fn>` type with the given argument types and return
/// type. Designed for use with `unsafe_impl_for_power_set`.
macro_rules! opt_fn {
($($args:ident),* -> $ret:ident) => { Option<fn($($args),*) -> $ret> };
}
/// Implements trait(s) for a type or verifies the given implementation by
/// referencing an existing (derived) implementation.
///
/// This macro exists so that we can provide zerocopy-derive as an optional
/// dependency and still get the benefit of using its derives to validate that
/// our trait impls are sound.
///
/// When compiling without `--cfg 'feature = "derive"` and without `--cfg test`,
/// `impl_or_verify!` emits the provided trait impl. When compiling with either
/// of those cfgs, it is expected that the type in question is deriving the
/// traits instead. In this case, `impl_or_verify!` emits code which validates
/// that the given trait impl is at least as restrictive as the the impl emitted
/// by the custom derive. This has the effect of confirming that the impl which
/// is emitted when the `derive` feature is disabled is actually sound (on the
/// assumption that the impl emitted by the custom derive is sound).
///
/// The caller is still required to provide a safety comment (e.g. using the
/// `safety_comment!` macro) . The reason for this restriction is that, while
/// `impl_or_verify!` can guarantee that the provided impl is sound when it is
/// compiled with the appropriate cfgs, there is no way to guarantee that it is
/// ever compiled with those cfgs. In particular, it would be possible to
/// accidentally place an `impl_or_verify!` call in a context that is only ever
/// compiled when the `derive` feature is disabled. If that were to happen,
/// there would be nothing to prevent an unsound trait impl from being emitted.
/// Requiring a safety comment reduces the likelihood of emitting an unsound
/// impl in this case, and also provides useful documentation for readers of the
/// code.
///
/// Finally, if a `TryFromBytes::is_bit_valid` impl is provided, it must adhere
/// to the safety preconditions of [`unsafe_impl!`].
///
/// ## Example
///
/// ```rust,ignore
/// // Note that these derives are gated by `feature = "derive"`
/// #[cfg_attr(any(feature = "derive", test), derive(FromZeros, FromBytes, IntoBytes, Unaligned))]
/// #[repr(transparent)]
/// struct Wrapper<T>(T);
///
/// safety_comment! {
/// /// SAFETY:
/// /// `Wrapper<T>` is `repr(transparent)`, so it is sound to implement any
/// /// zerocopy trait if `T` implements that trait.
/// impl_or_verify!(T: FromZeros => FromZeros for Wrapper<T>);
/// impl_or_verify!(T: FromBytes => FromBytes for Wrapper<T>);
/// impl_or_verify!(T: IntoBytes => IntoBytes for Wrapper<T>);
/// impl_or_verify!(T: Unaligned => Unaligned for Wrapper<T>);
/// }
/// ```
macro_rules! impl_or_verify {
// The following two match arms follow the same pattern as their
// counterparts in `unsafe_impl!`; see the documentation on those arms for
// more details.
(
const $constname:ident : $constty:ident $(,)?
$($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?),*
=> $trait:ident for $ty:ty
) => {
impl_or_verify!(@impl { unsafe_impl!(
const $constname: $constty, $($tyvar $(: $(? $optbound +)* $($bound +)*)?),* => $trait for $ty
); });
impl_or_verify!(@verify $trait, {
impl<const $constname: $constty, $($tyvar $(: $(? $optbound +)* $($bound +)*)?),*> Subtrait for $ty {}
});
};
(
$($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?),*
=> $trait:ident for $ty:ty $(; |$candidate:ident $(: MaybeAligned<$ref_repr:ty>)? $(: Maybe<$ptr_repr:ty>)?| $is_bit_valid:expr)?
) => {
impl_or_verify!(@impl { unsafe_impl!(
$($tyvar $(: $(? $optbound +)* $($bound +)*)?),* => $trait for $ty
$(; |$candidate $(: MaybeAligned<$ref_repr>)? $(: Maybe<$ptr_repr>)?| $is_bit_valid)?
); });
impl_or_verify!(@verify $trait, {
impl<$($tyvar $(: $(? $optbound +)* $($bound +)*)?),*> Subtrait for $ty {}
});
};
(@impl $impl_block:tt) => {
#[cfg(not(any(feature = "derive", test)))]
const _: () = { $impl_block };
};
(@verify $trait:ident, $impl_block:tt) => {
#[cfg(any(feature = "derive", test))]
const _: () = {
trait Subtrait: $trait {}
$impl_block
};
};
}
/// Implements `KnownLayout` for a sized type.
macro_rules! impl_known_layout {
($(const $constvar:ident : $constty:ty, $tyvar:ident $(: ?$optbound:ident)? => $ty:ty),* $(,)?) => {
$(impl_known_layout!(@inner const $constvar: $constty, $tyvar $(: ?$optbound)? => $ty);)*
};
($($tyvar:ident $(: ?$optbound:ident)? => $ty:ty),* $(,)?) => {
$(impl_known_layout!(@inner , $tyvar $(: ?$optbound)? => $ty);)*
};
($($ty:ty),*) => { $(impl_known_layout!(@inner , => $ty);)* };
(@inner $(const $constvar:ident : $constty:ty)? , $($tyvar:ident $(: ?$optbound:ident)?)? => $ty:ty) => {
const _: () = {
use core::ptr::NonNull;
#[allow(non_local_definitions)]
// SAFETY: Delegates safety to `DstLayout::for_type`.
unsafe impl<$($tyvar $(: ?$optbound)?)? $(, const $constvar : $constty)?> KnownLayout for $ty {
#[allow(clippy::missing_inline_in_public_items)]
#[cfg_attr(coverage_nightly, coverage(off))]
fn only_derive_is_allowed_to_implement_this_trait() where Self: Sized {}
type PointerMetadata = ();
const LAYOUT: crate::DstLayout = crate::DstLayout::for_type::<$ty>();
// SAFETY: `.cast` preserves address and provenance.
//
// TODO(#429): Add documentation to `.cast` that promises that
// it preserves provenance.
#[inline(always)]
fn raw_from_ptr_len(bytes: NonNull<u8>, _meta: ()) -> NonNull<Self> {
bytes.cast::<Self>()
}
#[inline(always)]
fn pointer_to_metadata(_ptr: *mut Self) -> () {
}
}
};
};
}
/// Implements `KnownLayout` for a type in terms of the implementation of
/// another type with the same representation.
///
/// # Safety
///
/// - `$ty` and `$repr` must have the same:
/// - Fixed prefix size
/// - Alignment
/// - (For DSTs) trailing slice element size
/// - It must be valid to perform an `as` cast from `*mut $repr` to `*mut $ty`,
/// and this operation must preserve referent size (ie, `size_of_val_raw`).
macro_rules! unsafe_impl_known_layout {
($($tyvar:ident: ?Sized + KnownLayout =>)? #[repr($repr:ty)] $ty:ty) => {
const _: () = {
use core::ptr::NonNull;
#[allow(non_local_definitions)]
unsafe impl<$($tyvar: ?Sized + KnownLayout)?> KnownLayout for $ty {
#[allow(clippy::missing_inline_in_public_items)]
#[cfg_attr(coverage_nightly, coverage(off))]
fn only_derive_is_allowed_to_implement_this_trait() {}
type PointerMetadata = <$repr as KnownLayout>::PointerMetadata;
const LAYOUT: DstLayout = <$repr as KnownLayout>::LAYOUT;
// SAFETY: All operations preserve address and provenance.
// Caller has promised that the `as` cast preserves size.
//
// TODO(#429): Add documentation to `NonNull::new_unchecked`
// that it preserves provenance.
#[inline(always)]
fn raw_from_ptr_len(bytes: NonNull<u8>, meta: <$repr as KnownLayout>::PointerMetadata) -> NonNull<Self> {
#[allow(clippy::as_conversions)]
let ptr = <$repr>::raw_from_ptr_len(bytes, meta).as_ptr() as *mut Self;
// SAFETY: `ptr` was converted from `bytes`, which is non-null.
unsafe { NonNull::new_unchecked(ptr) }
}
#[inline(always)]
fn pointer_to_metadata(ptr: *mut Self) -> Self::PointerMetadata {
#[allow(clippy::as_conversions)]
let ptr = ptr as *mut $repr;
<$repr>::pointer_to_metadata(ptr)
}
}
};
};
}
/// Uses `align_of` to confirm that a type or set of types have alignment 1.
///
/// Note that `align_of<T>` requires `T: Sized`, so this macro doesn't work for
/// unsized types.
macro_rules! assert_unaligned {
($($tys:ty),*) => {
$(
// We only compile this assertion under `cfg(test)` to avoid taking
// an extra non-dev dependency (and making this crate more expensive
// to compile for our dependents).
#[cfg(test)]
static_assertions::const_assert_eq!(core::mem::align_of::<$tys>(), 1);
)*
};
}
/// Emits a function definition as either `const fn` or `fn` depending on
/// whether the current toolchain version supports `const fn` with generic trait
/// bounds.
macro_rules! maybe_const_trait_bounded_fn {
// This case handles both `self` methods (where `self` is by value) and
// non-method functions. Each `$args` may optionally be followed by `:
// $arg_tys:ty`, which can be omitted for `self`.
($(#[$attr:meta])* $vis:vis const fn $name:ident($($args:ident $(: $arg_tys:ty)?),* $(,)?) $(-> $ret_ty:ty)? $body:block) => {
#[cfg(zerocopy_generic_bounds_in_const_fn_1_61_0)]
$(#[$attr])* $vis const fn $name($($args $(: $arg_tys)?),*) $(-> $ret_ty)? $body
#[cfg(not(zerocopy_generic_bounds_in_const_fn_1_61_0))]
$(#[$attr])* $vis fn $name($($args $(: $arg_tys)?),*) $(-> $ret_ty)? $body
};
}
/// Either panic (if the current Rust toolchain supports panicking in `const
/// fn`) or evaluate a constant that will cause an array indexing error whose
/// error message will include the format string.
///
/// The type that this expression evaluates to must be `Copy`, or else the
/// non-panicking desugaring will fail to compile.
macro_rules! const_panic {
(@non_panic $($_arg:tt)+) => {{
// This will type check to whatever type is expected based on the call
// site.
let panic: [_; 0] = [];
// This will always fail (since we're indexing into an array of size 0.
#[allow(unconditional_panic)]
panic[0]
}};
($($arg:tt)+) => {{
#[cfg(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)]
panic!($($arg)+);
#[cfg(not(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))]
const_panic!(@non_panic $($arg)+)
}};
}
/// Either assert (if the current Rust toolchain supports panicking in `const
/// fn`) or evaluate the expression and, if it evaluates to `false`, call
/// `const_panic!`. This is used in place of `assert!` in const contexts to
/// accommodate old toolchains.
macro_rules! const_assert {
($e:expr) => {{
#[cfg(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)]
assert!($e);
#[cfg(not(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))]
{
let e = $e;
if !e {
let _: () = const_panic!(@non_panic concat!("assertion failed: ", stringify!($e)));
}
}
}};
($e:expr, $($args:tt)+) => {{
#[cfg(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)]
assert!($e, $($args)+);
#[cfg(not(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))]
{
let e = $e;
if !e {
let _: () = const_panic!(@non_panic concat!("assertion failed: ", stringify!($e), ": ", stringify!($arg)), $($args)*);
}
}
}};
}
/// Like `const_assert!`, but relative to `debug_assert!`.
macro_rules! const_debug_assert {
($e:expr $(, $msg:expr)?) => {{
#[cfg(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)]
debug_assert!($e $(, $msg)?);
#[cfg(not(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))]
{
// Use this (rather than `#[cfg(debug_assertions)]`) to ensure that
// `$e` is always compiled even if it will never be evaluated at
// runtime.
if cfg!(debug_assertions) {
let e = $e;
if !e {
let _: () = const_panic!(@non_panic concat!("assertion failed: ", stringify!($e) $(, ": ", $msg)?));
}
}
}
}}
}
/// Either invoke `unreachable!()` or `loop {}` depending on whether the Rust
/// toolchain supports panicking in `const fn`.
macro_rules! const_unreachable {
() => {{
#[cfg(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)]
unreachable!();
#[cfg(not(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))]
loop {}
}};
}
/// Asserts at compile time that `$condition` is true for `Self` or the given
/// `$tyvar`s. Unlike `const_assert`, this is *strictly* a compile-time check;
/// it cannot be evaluated in a runtime context. The condition is checked after
/// monomorphization and, upon failure, emits a compile error.
macro_rules! static_assert {
(Self $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )? => $condition:expr $(, $args:tt)*) => {{
trait StaticAssert {
const ASSERT: bool;
}
impl<T $(: $(? $optbound +)* $($bound +)*)?> StaticAssert for T {
const ASSERT: bool = {
const_assert!($condition $(, $args)*);
$condition
};
}
const_assert!(<Self as StaticAssert>::ASSERT);
}};
($($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?),* => $condition:expr $(, $args:tt)*) => {{
trait StaticAssert {
const ASSERT: bool;
}
impl<$($tyvar $(: $(? $optbound +)* $($bound +)*)?,)*> StaticAssert for ($($tyvar,)*) {
const ASSERT: bool = {
const_assert!($condition $(, $args)*);
$condition
};
}
const_assert!(<($($tyvar,)*) as StaticAssert>::ASSERT);
}};
}
/// Assert at compile time that `tyvar` does not have a zero-sized DST
/// component.
macro_rules! static_assert_dst_is_not_zst {
($tyvar:ident) => {{
use crate::KnownLayout;
static_assert!($tyvar: ?Sized + KnownLayout => {
let dst_is_zst = match $tyvar::LAYOUT.size_info {
crate::SizeInfo::Sized { .. } => false,
crate::SizeInfo::SliceDst(TrailingSliceLayout { elem_size, .. }) => {
elem_size == 0
}
};
!dst_is_zst
}, "cannot call this method on a dynamically-sized type whose trailing slice element is zero-sized");
}}
}