zerocopy/
layout.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
// Copyright 2024 The Fuchsia Authors
//
// Licensed under the 2-Clause BSD License <LICENSE-BSD or
// https://opensource.org/license/bsd-2-clause>, Apache License, Version 2.0
// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
// This file may not be copied, modified, or distributed except according to
// those terms.

use core::{mem, num::NonZeroUsize};

use crate::util;

/// The target pointer width, counted in bits.
const POINTER_WIDTH_BITS: usize = mem::size_of::<usize>() * 8;

/// The layout of a type which might be dynamically-sized.
///
/// `DstLayout` describes the layout of sized types, slice types, and "slice
/// DSTs" - ie, those that are known by the type system to have a trailing slice
/// (as distinguished from `dyn Trait` types - such types *might* have a
/// trailing slice type, but the type system isn't aware of it).
///
/// Note that `DstLayout` does not have any internal invariants, so no guarantee
/// is made that a `DstLayout` conforms to any of Rust's requirements regarding
/// the layout of real Rust types or instances of types.
#[doc(hidden)]
#[allow(missing_debug_implementations, missing_copy_implementations)]
#[cfg_attr(any(kani, test), derive(Copy, Clone, Debug, PartialEq, Eq))]
pub struct DstLayout {
    pub(crate) align: NonZeroUsize,
    pub(crate) size_info: SizeInfo,
}

#[cfg_attr(any(kani, test), derive(Debug, PartialEq, Eq))]
#[derive(Copy, Clone)]
pub(crate) enum SizeInfo<E = usize> {
    Sized { size: usize },
    SliceDst(TrailingSliceLayout<E>),
}

#[cfg_attr(any(kani, test), derive(Debug, PartialEq, Eq))]
#[derive(Copy, Clone)]
pub(crate) struct TrailingSliceLayout<E = usize> {
    // The offset of the first byte of the trailing slice field. Note that this
    // is NOT the same as the minimum size of the type. For example, consider
    // the following type:
    //
    //   struct Foo {
    //       a: u16,
    //       b: u8,
    //       c: [u8],
    //   }
    //
    // In `Foo`, `c` is at byte offset 3. When `c.len() == 0`, `c` is followed
    // by a padding byte.
    pub(crate) offset: usize,
    // The size of the element type of the trailing slice field.
    pub(crate) elem_size: E,
}

impl SizeInfo {
    /// Attempts to create a `SizeInfo` from `Self` in which `elem_size` is a
    /// `NonZeroUsize`. If `elem_size` is 0, returns `None`.
    #[allow(unused)]
    const fn try_to_nonzero_elem_size(&self) -> Option<SizeInfo<NonZeroUsize>> {
        Some(match *self {
            SizeInfo::Sized { size } => SizeInfo::Sized { size },
            SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }) => {
                if let Some(elem_size) = NonZeroUsize::new(elem_size) {
                    SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size })
                } else {
                    return None;
                }
            }
        })
    }
}

#[doc(hidden)]
#[derive(Copy, Clone)]
#[cfg_attr(test, derive(Debug))]
#[allow(missing_debug_implementations)]
pub enum CastType {
    Prefix,
    Suffix,
}

#[cfg_attr(test, derive(Debug))]
pub(crate) enum MetadataCastError {
    Alignment,
    Size,
}

impl DstLayout {
    /// The minimum possible alignment of a type.
    const MIN_ALIGN: NonZeroUsize = match NonZeroUsize::new(1) {
        Some(min_align) => min_align,
        None => const_unreachable!(),
    };

    /// The maximum theoretic possible alignment of a type.
    ///
    /// For compatibility with future Rust versions, this is defined as the
    /// maximum power-of-two that fits into a `usize`. See also
    /// [`DstLayout::CURRENT_MAX_ALIGN`].
    pub(crate) const THEORETICAL_MAX_ALIGN: NonZeroUsize =
        match NonZeroUsize::new(1 << (POINTER_WIDTH_BITS - 1)) {
            Some(max_align) => max_align,
            None => const_unreachable!(),
        };

    /// The current, documented max alignment of a type \[1\].
    ///
    /// \[1\] Per <https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers>:
    ///
    ///   The alignment value must be a power of two from 1 up to
    ///   2<sup>29</sup>.
    #[cfg(not(kani))]
    pub(crate) const CURRENT_MAX_ALIGN: NonZeroUsize = match NonZeroUsize::new(1 << 28) {
        Some(max_align) => max_align,
        None => const_unreachable!(),
    };

    /// Constructs a `DstLayout` for a zero-sized type with `repr_align`
    /// alignment (or 1). If `repr_align` is provided, then it must be a power
    /// of two.
    ///
    /// # Panics
    ///
    /// This function panics if the supplied `repr_align` is not a power of two.
    ///
    /// # Safety
    ///
    /// Unsafe code may assume that the contract of this function is satisfied.
    #[doc(hidden)]
    #[must_use]
    #[inline]
    pub const fn new_zst(repr_align: Option<NonZeroUsize>) -> DstLayout {
        let align = match repr_align {
            Some(align) => align,
            None => Self::MIN_ALIGN,
        };

        const_assert!(align.get().is_power_of_two());

        DstLayout { align, size_info: SizeInfo::Sized { size: 0 } }
    }

    /// Constructs a `DstLayout` which describes `T`.
    ///
    /// # Safety
    ///
    /// Unsafe code may assume that `DstLayout` is the correct layout for `T`.
    #[doc(hidden)]
    #[must_use]
    #[inline]
    pub const fn for_type<T>() -> DstLayout {
        // SAFETY: `align` is correct by construction. `T: Sized`, and so it is
        // sound to initialize `size_info` to `SizeInfo::Sized { size }`; the
        // `size` field is also correct by construction.
        DstLayout {
            align: match NonZeroUsize::new(mem::align_of::<T>()) {
                Some(align) => align,
                None => const_unreachable!(),
            },
            size_info: SizeInfo::Sized { size: mem::size_of::<T>() },
        }
    }

    /// Constructs a `DstLayout` which describes `[T]`.
    ///
    /// # Safety
    ///
    /// Unsafe code may assume that `DstLayout` is the correct layout for `[T]`.
    pub(crate) const fn for_slice<T>() -> DstLayout {
        // SAFETY: The alignment of a slice is equal to the alignment of its
        // element type, and so `align` is initialized correctly.
        //
        // Since this is just a slice type, there is no offset between the
        // beginning of the type and the beginning of the slice, so it is
        // correct to set `offset: 0`. The `elem_size` is correct by
        // construction. Since `[T]` is a (degenerate case of a) slice DST, it
        // is correct to initialize `size_info` to `SizeInfo::SliceDst`.
        DstLayout {
            align: match NonZeroUsize::new(mem::align_of::<T>()) {
                Some(align) => align,
                None => const_unreachable!(),
            },
            size_info: SizeInfo::SliceDst(TrailingSliceLayout {
                offset: 0,
                elem_size: mem::size_of::<T>(),
            }),
        }
    }

    /// Like `Layout::extend`, this creates a layout that describes a record
    /// whose layout consists of `self` followed by `next` that includes the
    /// necessary inter-field padding, but not any trailing padding.
    ///
    /// In order to match the layout of a `#[repr(C)]` struct, this method
    /// should be invoked for each field in declaration order. To add trailing
    /// padding, call `DstLayout::pad_to_align` after extending the layout for
    /// all fields. If `self` corresponds to a type marked with
    /// `repr(packed(N))`, then `repr_packed` should be set to `Some(N)`,
    /// otherwise `None`.
    ///
    /// This method cannot be used to match the layout of a record with the
    /// default representation, as that representation is mostly unspecified.
    ///
    /// # Safety
    ///
    /// If a (potentially hypothetical) valid `repr(C)` Rust type begins with
    /// fields whose layout are `self`, and those fields are immediately
    /// followed by a field whose layout is `field`, then unsafe code may rely
    /// on `self.extend(field, repr_packed)` producing a layout that correctly
    /// encompasses those two components.
    ///
    /// We make no guarantees to the behavior of this method if these fragments
    /// cannot appear in a valid Rust type (e.g., the concatenation of the
    /// layouts would lead to a size larger than `isize::MAX`).
    #[doc(hidden)]
    #[must_use]
    #[inline]
    pub const fn extend(self, field: DstLayout, repr_packed: Option<NonZeroUsize>) -> Self {
        use util::{max, min, padding_needed_for};

        // If `repr_packed` is `None`, there are no alignment constraints, and
        // the value can be defaulted to `THEORETICAL_MAX_ALIGN`.
        let max_align = match repr_packed {
            Some(max_align) => max_align,
            None => Self::THEORETICAL_MAX_ALIGN,
        };

        const_assert!(max_align.get().is_power_of_two());

        // We use Kani to prove that this method is robust to future increases
        // in Rust's maximum allowed alignment. However, if such a change ever
        // actually occurs, we'd like to be notified via assertion failures.
        #[cfg(not(kani))]
        {
            const_debug_assert!(self.align.get() <= DstLayout::CURRENT_MAX_ALIGN.get());
            const_debug_assert!(field.align.get() <= DstLayout::CURRENT_MAX_ALIGN.get());
            if let Some(repr_packed) = repr_packed {
                const_debug_assert!(repr_packed.get() <= DstLayout::CURRENT_MAX_ALIGN.get());
            }
        }

        // The field's alignment is clamped by `repr_packed` (i.e., the
        // `repr(packed(N))` attribute, if any) [1].
        //
        // [1] Per https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers:
        //
        //   The alignments of each field, for the purpose of positioning
        //   fields, is the smaller of the specified alignment and the alignment
        //   of the field's type.
        let field_align = min(field.align, max_align);

        // The struct's alignment is the maximum of its previous alignment and
        // `field_align`.
        let align = max(self.align, field_align);

        let size_info = match self.size_info {
            // If the layout is already a DST, we panic; DSTs cannot be extended
            // with additional fields.
            SizeInfo::SliceDst(..) => const_panic!("Cannot extend a DST with additional fields."),

            SizeInfo::Sized { size: preceding_size } => {
                // Compute the minimum amount of inter-field padding needed to
                // satisfy the field's alignment, and offset of the trailing
                // field. [1]
                //
                // [1] Per https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers:
                //
                //   Inter-field padding is guaranteed to be the minimum
                //   required in order to satisfy each field's (possibly
                //   altered) alignment.
                let padding = padding_needed_for(preceding_size, field_align);

                // This will not panic (and is proven to not panic, with Kani)
                // if the layout components can correspond to a leading layout
                // fragment of a valid Rust type, but may panic otherwise (e.g.,
                // combining or aligning the components would create a size
                // exceeding `isize::MAX`).
                let offset = match preceding_size.checked_add(padding) {
                    Some(offset) => offset,
                    None => const_panic!("Adding padding to `self`'s size overflows `usize`."),
                };

                match field.size_info {
                    SizeInfo::Sized { size: field_size } => {
                        // If the trailing field is sized, the resulting layout
                        // will be sized. Its size will be the sum of the
                        // preceeding layout, the size of the new field, and the
                        // size of inter-field padding between the two.
                        //
                        // This will not panic (and is proven with Kani to not
                        // panic) if the layout components can correspond to a
                        // leading layout fragment of a valid Rust type, but may
                        // panic otherwise (e.g., combining or aligning the
                        // components would create a size exceeding
                        // `usize::MAX`).
                        let size = match offset.checked_add(field_size) {
                            Some(size) => size,
                            None => const_panic!("`field` cannot be appended without the total size overflowing `usize`"),
                        };
                        SizeInfo::Sized { size }
                    }
                    SizeInfo::SliceDst(TrailingSliceLayout {
                        offset: trailing_offset,
                        elem_size,
                    }) => {
                        // If the trailing field is dynamically sized, so too
                        // will the resulting layout. The offset of the trailing
                        // slice component is the sum of the offset of the
                        // trailing field and the trailing slice offset within
                        // that field.
                        //
                        // This will not panic (and is proven with Kani to not
                        // panic) if the layout components can correspond to a
                        // leading layout fragment of a valid Rust type, but may
                        // panic otherwise (e.g., combining or aligning the
                        // components would create a size exceeding
                        // `usize::MAX`).
                        let offset = match offset.checked_add(trailing_offset) {
                            Some(offset) => offset,
                            None => const_panic!("`field` cannot be appended without the total size overflowing `usize`"),
                        };
                        SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size })
                    }
                }
            }
        };

        DstLayout { align, size_info }
    }

    /// Like `Layout::pad_to_align`, this routine rounds the size of this layout
    /// up to the nearest multiple of this type's alignment or `repr_packed`
    /// (whichever is less). This method leaves DST layouts unchanged, since the
    /// trailing padding of DSTs is computed at runtime.
    ///
    /// In order to match the layout of a `#[repr(C)]` struct, this method
    /// should be invoked after the invocations of [`DstLayout::extend`]. If
    /// `self` corresponds to a type marked with `repr(packed(N))`, then
    /// `repr_packed` should be set to `Some(N)`, otherwise `None`.
    ///
    /// This method cannot be used to match the layout of a record with the
    /// default representation, as that representation is mostly unspecified.
    ///
    /// # Safety
    ///
    /// If a (potentially hypothetical) valid `repr(C)` type begins with fields
    /// whose layout are `self` followed only by zero or more bytes of trailing
    /// padding (not included in `self`), then unsafe code may rely on
    /// `self.pad_to_align(repr_packed)` producing a layout that correctly
    /// encapsulates the layout of that type.
    ///
    /// We make no guarantees to the behavior of this method if `self` cannot
    /// appear in a valid Rust type (e.g., because the addition of trailing
    /// padding would lead to a size larger than `isize::MAX`).
    #[doc(hidden)]
    #[must_use]
    #[inline]
    pub const fn pad_to_align(self) -> Self {
        use util::padding_needed_for;

        let size_info = match self.size_info {
            // For sized layouts, we add the minimum amount of trailing padding
            // needed to satisfy alignment.
            SizeInfo::Sized { size: unpadded_size } => {
                let padding = padding_needed_for(unpadded_size, self.align);
                let size = match unpadded_size.checked_add(padding) {
                    Some(size) => size,
                    None => const_panic!("Adding padding caused size to overflow `usize`."),
                };
                SizeInfo::Sized { size }
            }
            // For DST layouts, trailing padding depends on the length of the
            // trailing DST and is computed at runtime. This does not alter the
            // offset or element size of the layout, so we leave `size_info`
            // unchanged.
            size_info @ SizeInfo::SliceDst(_) => size_info,
        };

        DstLayout { align: self.align, size_info }
    }

    /// Validates that a cast is sound from a layout perspective.
    ///
    /// Validates that the size and alignment requirements of a type with the
    /// layout described in `self` would not be violated by performing a
    /// `cast_type` cast from a pointer with address `addr` which refers to a
    /// memory region of size `bytes_len`.
    ///
    /// If the cast is valid, `validate_cast_and_convert_metadata` returns
    /// `(elems, split_at)`. If `self` describes a dynamically-sized type, then
    /// `elems` is the maximum number of trailing slice elements for which a
    /// cast would be valid (for sized types, `elem` is meaningless and should
    /// be ignored). `split_at` is the index at which to split the memory region
    /// in order for the prefix (suffix) to contain the result of the cast, and
    /// in order for the remaining suffix (prefix) to contain the leftover
    /// bytes.
    ///
    /// There are three conditions under which a cast can fail:
    /// - The smallest possible value for the type is larger than the provided
    ///   memory region
    /// - A prefix cast is requested, and `addr` does not satisfy `self`'s
    ///   alignment requirement
    /// - A suffix cast is requested, and `addr + bytes_len` does not satisfy
    ///   `self`'s alignment requirement (as a consequence, since all instances
    ///   of the type are a multiple of its alignment, no size for the type will
    ///   result in a starting address which is properly aligned)
    ///
    /// # Safety
    ///
    /// The caller may assume that this implementation is correct, and may rely
    /// on that assumption for the soundness of their code. In particular, the
    /// caller may assume that, if `validate_cast_and_convert_metadata` returns
    /// `Some((elems, split_at))`, then:
    /// - A pointer to the type (for dynamically sized types, this includes
    ///   `elems` as its pointer metadata) describes an object of size `size <=
    ///   bytes_len`
    /// - If this is a prefix cast:
    ///   - `addr` satisfies `self`'s alignment
    ///   - `size == split_at`
    /// - If this is a suffix cast:
    ///   - `split_at == bytes_len - size`
    ///   - `addr + split_at` satisfies `self`'s alignment
    ///
    /// Note that this method does *not* ensure that a pointer constructed from
    /// its return values will be a valid pointer. In particular, this method
    /// does not reason about `isize` overflow, which is a requirement of many
    /// Rust pointer APIs, and may at some point be determined to be a validity
    /// invariant of pointer types themselves. This should never be a problem so
    /// long as the arguments to this method are derived from a known-valid
    /// pointer (e.g., one derived from a safe Rust reference), but it is
    /// nonetheless the caller's responsibility to justify that pointer
    /// arithmetic will not overflow based on a safety argument *other than* the
    /// mere fact that this method returned successfully.
    ///
    /// # Panics
    ///
    /// `validate_cast_and_convert_metadata` will panic if `self` describes a
    /// DST whose trailing slice element is zero-sized.
    ///
    /// If `addr + bytes_len` overflows `usize`,
    /// `validate_cast_and_convert_metadata` may panic, or it may return
    /// incorrect results. No guarantees are made about when
    /// `validate_cast_and_convert_metadata` will panic. The caller should not
    /// rely on `validate_cast_and_convert_metadata` panicking in any particular
    /// condition, even if `debug_assertions` are enabled.
    #[allow(unused)]
    pub(crate) const fn validate_cast_and_convert_metadata(
        &self,
        addr: usize,
        bytes_len: usize,
        cast_type: CastType,
    ) -> Result<(usize, usize), MetadataCastError> {
        // `debug_assert!`, but with `#[allow(clippy::arithmetic_side_effects)]`.
        macro_rules! __const_debug_assert {
            ($e:expr $(, $msg:expr)?) => {
                const_debug_assert!({
                    #[allow(clippy::arithmetic_side_effects)]
                    let e = $e;
                    e
                } $(, $msg)?);
            };
        }

        // Note that, in practice, `self` is always a compile-time constant. We
        // do this check earlier than needed to ensure that we always panic as a
        // result of bugs in the program (such as calling this function on an
        // invalid type) instead of allowing this panic to be hidden if the cast
        // would have failed anyway for runtime reasons (such as a too-small
        // memory region).
        //
        // TODO(#67): Once our MSRV is 1.65, use let-else:
        // https://blog.rust-lang.org/2022/11/03/Rust-1.65.0.html#let-else-statements
        let size_info = match self.size_info.try_to_nonzero_elem_size() {
            Some(size_info) => size_info,
            None => const_panic!("attempted to cast to slice type with zero-sized element"),
        };

        // Precondition
        __const_debug_assert!(
            addr.checked_add(bytes_len).is_some(),
            "`addr` + `bytes_len` > usize::MAX"
        );

        // Alignment checks go in their own block to avoid introducing variables
        // into the top-level scope.
        {
            // We check alignment for `addr` (for prefix casts) or `addr +
            // bytes_len` (for suffix casts). For a prefix cast, the correctness
            // of this check is trivial - `addr` is the address the object will
            // live at.
            //
            // For a suffix cast, we know that all valid sizes for the type are
            // a multiple of the alignment (and by safety precondition, we know
            // `DstLayout` may only describe valid Rust types). Thus, a
            // validly-sized instance which lives at a validly-aligned address
            // must also end at a validly-aligned address. Thus, if the end
            // address for a suffix cast (`addr + bytes_len`) is not aligned,
            // then no valid start address will be aligned either.
            let offset = match cast_type {
                CastType::Prefix => 0,
                CastType::Suffix => bytes_len,
            };

            // Addition is guaranteed not to overflow because `offset <=
            // bytes_len`, and `addr + bytes_len <= usize::MAX` is a
            // precondition of this method. Modulus is guaranteed not to divide
            // by 0 because `align` is non-zero.
            #[allow(clippy::arithmetic_side_effects)]
            if (addr + offset) % self.align.get() != 0 {
                return Err(MetadataCastError::Alignment);
            }
        }

        let (elems, self_bytes) = match size_info {
            SizeInfo::Sized { size } => {
                if size > bytes_len {
                    return Err(MetadataCastError::Size);
                }
                (0, size)
            }
            SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }) => {
                // Calculate the maximum number of bytes that could be consumed
                // - any number of bytes larger than this will either not be a
                // multiple of the alignment, or will be larger than
                // `bytes_len`.
                let max_total_bytes =
                    util::round_down_to_next_multiple_of_alignment(bytes_len, self.align);
                // Calculate the maximum number of bytes that could be consumed
                // by the trailing slice.
                //
                // TODO(#67): Once our MSRV is 1.65, use let-else:
                // https://blog.rust-lang.org/2022/11/03/Rust-1.65.0.html#let-else-statements
                let max_slice_and_padding_bytes = match max_total_bytes.checked_sub(offset) {
                    Some(max) => max,
                    // `bytes_len` too small even for 0 trailing slice elements.
                    None => return Err(MetadataCastError::Size),
                };

                // Calculate the number of elements that fit in
                // `max_slice_and_padding_bytes`; any remaining bytes will be
                // considered padding.
                //
                // Guaranteed not to divide by zero: `elem_size` is non-zero.
                #[allow(clippy::arithmetic_side_effects)]
                let elems = max_slice_and_padding_bytes / elem_size.get();
                // Guaranteed not to overflow on multiplication: `usize::MAX >=
                // max_slice_and_padding_bytes >= (max_slice_and_padding_bytes /
                // elem_size) * elem_size`.
                //
                // Guaranteed not to overflow on addition:
                // - max_slice_and_padding_bytes == max_total_bytes - offset
                // - elems * elem_size <= max_slice_and_padding_bytes == max_total_bytes - offset
                // - elems * elem_size + offset <= max_total_bytes <= usize::MAX
                #[allow(clippy::arithmetic_side_effects)]
                let without_padding = offset + elems * elem_size.get();
                // `self_bytes` is equal to the offset bytes plus the bytes
                // consumed by the trailing slice plus any padding bytes
                // required to satisfy the alignment. Note that we have computed
                // the maximum number of trailing slice elements that could fit
                // in `self_bytes`, so any padding is guaranteed to be less than
                // the size of an extra element.
                //
                // Guaranteed not to overflow:
                // - By previous comment: without_padding == elems * elem_size +
                //   offset <= max_total_bytes
                // - By construction, `max_total_bytes` is a multiple of
                //   `self.align`.
                // - At most, adding padding needed to round `without_padding`
                //   up to the next multiple of the alignment will bring
                //   `self_bytes` up to `max_total_bytes`.
                #[allow(clippy::arithmetic_side_effects)]
                let self_bytes =
                    without_padding + util::padding_needed_for(without_padding, self.align);
                (elems, self_bytes)
            }
        };

        __const_debug_assert!(self_bytes <= bytes_len);

        let split_at = match cast_type {
            CastType::Prefix => self_bytes,
            // Guaranteed not to underflow:
            // - In the `Sized` branch, only returns `size` if `size <=
            //   bytes_len`.
            // - In the `SliceDst` branch, calculates `self_bytes <=
            //   max_toatl_bytes`, which is upper-bounded by `bytes_len`.
            #[allow(clippy::arithmetic_side_effects)]
            CastType::Suffix => bytes_len - self_bytes,
        };

        Ok((elems, split_at))
    }
}

// TODO(#67): For some reason, on our MSRV toolchain, this `allow` isn't
// enforced despite having `#![allow(unknown_lints)]` at the crate root, but
// putting it here works. Once our MSRV is high enough that this bug has been
// fixed, remove this `allow`.
#[allow(unknown_lints)]
#[cfg(test)]
mod tests {
    use super::*;

    /// Tests of when a sized `DstLayout` is extended with a sized field.
    #[allow(clippy::decimal_literal_representation)]
    #[test]
    fn test_dst_layout_extend_sized_with_sized() {
        // This macro constructs a layout corresponding to a `u8` and extends it
        // with a zero-sized trailing field of given alignment `n`. The macro
        // tests that the resulting layout has both size and alignment `min(n,
        // P)` for all valid values of `repr(packed(P))`.
        macro_rules! test_align_is_size {
            ($n:expr) => {
                let base = DstLayout::for_type::<u8>();
                let trailing_field = DstLayout::for_type::<elain::Align<$n>>();

                let packs =
                    core::iter::once(None).chain((0..29).map(|p| NonZeroUsize::new(2usize.pow(p))));

                for pack in packs {
                    let composite = base.extend(trailing_field, pack);
                    let max_align = pack.unwrap_or(DstLayout::CURRENT_MAX_ALIGN);
                    let align = $n.min(max_align.get());
                    assert_eq!(
                        composite,
                        DstLayout {
                            align: NonZeroUsize::new(align).unwrap(),
                            size_info: SizeInfo::Sized { size: align }
                        }
                    )
                }
            };
        }

        test_align_is_size!(1);
        test_align_is_size!(2);
        test_align_is_size!(4);
        test_align_is_size!(8);
        test_align_is_size!(16);
        test_align_is_size!(32);
        test_align_is_size!(64);
        test_align_is_size!(128);
        test_align_is_size!(256);
        test_align_is_size!(512);
        test_align_is_size!(1024);
        test_align_is_size!(2048);
        test_align_is_size!(4096);
        test_align_is_size!(8192);
        test_align_is_size!(16384);
        test_align_is_size!(32768);
        test_align_is_size!(65536);
        test_align_is_size!(131072);
        test_align_is_size!(262144);
        test_align_is_size!(524288);
        test_align_is_size!(1048576);
        test_align_is_size!(2097152);
        test_align_is_size!(4194304);
        test_align_is_size!(8388608);
        test_align_is_size!(16777216);
        test_align_is_size!(33554432);
        test_align_is_size!(67108864);
        test_align_is_size!(33554432);
        test_align_is_size!(134217728);
        test_align_is_size!(268435456);
    }

    /// Tests of when a sized `DstLayout` is extended with a DST field.
    #[test]
    fn test_dst_layout_extend_sized_with_dst() {
        // Test that for all combinations of real-world alignments and
        // `repr_packed` values, that the extension of a sized `DstLayout`` with
        // a DST field correctly computes the trailing offset in the composite
        // layout.

        let aligns = (0..29).map(|p| NonZeroUsize::new(2usize.pow(p)).unwrap());
        let packs = core::iter::once(None).chain(aligns.clone().map(Some));

        for align in aligns {
            for pack in packs.clone() {
                let base = DstLayout::for_type::<u8>();
                let elem_size = 42;
                let trailing_field_offset = 11;

                let trailing_field = DstLayout {
                    align,
                    size_info: SizeInfo::SliceDst(TrailingSliceLayout { elem_size, offset: 11 }),
                };

                let composite = base.extend(trailing_field, pack);

                let max_align = pack.unwrap_or(DstLayout::CURRENT_MAX_ALIGN).get();

                let align = align.get().min(max_align);

                assert_eq!(
                    composite,
                    DstLayout {
                        align: NonZeroUsize::new(align).unwrap(),
                        size_info: SizeInfo::SliceDst(TrailingSliceLayout {
                            elem_size,
                            offset: align + trailing_field_offset,
                        }),
                    }
                )
            }
        }
    }

    /// Tests that calling `pad_to_align` on a sized `DstLayout` adds the
    /// expected amount of trailing padding.
    #[test]
    fn test_dst_layout_pad_to_align_with_sized() {
        // For all valid alignments `align`, construct a one-byte layout aligned
        // to `align`, call `pad_to_align`, and assert that the size of the
        // resulting layout is equal to `align`.
        for align in (0..29).map(|p| NonZeroUsize::new(2usize.pow(p)).unwrap()) {
            let layout = DstLayout { align, size_info: SizeInfo::Sized { size: 1 } };

            assert_eq!(
                layout.pad_to_align(),
                DstLayout { align, size_info: SizeInfo::Sized { size: align.get() } }
            );
        }

        // Test explicitly-provided combinations of unpadded and padded
        // counterparts.

        macro_rules! test {
            (unpadded { size: $unpadded_size:expr, align: $unpadded_align:expr }
                    => padded { size: $padded_size:expr, align: $padded_align:expr }) => {
                let unpadded = DstLayout {
                    align: NonZeroUsize::new($unpadded_align).unwrap(),
                    size_info: SizeInfo::Sized { size: $unpadded_size },
                };
                let padded = unpadded.pad_to_align();

                assert_eq!(
                    padded,
                    DstLayout {
                        align: NonZeroUsize::new($padded_align).unwrap(),
                        size_info: SizeInfo::Sized { size: $padded_size },
                    }
                );
            };
        }

        test!(unpadded { size: 0, align: 4 } => padded { size: 0, align: 4 });
        test!(unpadded { size: 1, align: 4 } => padded { size: 4, align: 4 });
        test!(unpadded { size: 2, align: 4 } => padded { size: 4, align: 4 });
        test!(unpadded { size: 3, align: 4 } => padded { size: 4, align: 4 });
        test!(unpadded { size: 4, align: 4 } => padded { size: 4, align: 4 });
        test!(unpadded { size: 5, align: 4 } => padded { size: 8, align: 4 });
        test!(unpadded { size: 6, align: 4 } => padded { size: 8, align: 4 });
        test!(unpadded { size: 7, align: 4 } => padded { size: 8, align: 4 });
        test!(unpadded { size: 8, align: 4 } => padded { size: 8, align: 4 });

        let current_max_align = DstLayout::CURRENT_MAX_ALIGN.get();

        test!(unpadded { size: 1, align: current_max_align }
                => padded { size: current_max_align, align: current_max_align });

        test!(unpadded { size: current_max_align + 1, align: current_max_align }
                => padded { size: current_max_align * 2, align: current_max_align });
    }

    /// Tests that calling `pad_to_align` on a DST `DstLayout` is a no-op.
    #[test]
    fn test_dst_layout_pad_to_align_with_dst() {
        for align in (0..29).map(|p| NonZeroUsize::new(2usize.pow(p)).unwrap()) {
            for offset in 0..10 {
                for elem_size in 0..10 {
                    let layout = DstLayout {
                        align,
                        size_info: SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }),
                    };
                    assert_eq!(layout.pad_to_align(), layout);
                }
            }
        }
    }

    // This test takes a long time when running under Miri, so we skip it in
    // that case. This is acceptable because this is a logic test that doesn't
    // attempt to expose UB.
    #[test]
    #[cfg_attr(miri, ignore)]
    fn test_validate_cast_and_convert_metadata() {
        #[allow(non_local_definitions)]
        impl From<usize> for SizeInfo {
            fn from(size: usize) -> SizeInfo {
                SizeInfo::Sized { size }
            }
        }

        #[allow(non_local_definitions)]
        impl From<(usize, usize)> for SizeInfo {
            fn from((offset, elem_size): (usize, usize)) -> SizeInfo {
                SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size })
            }
        }

        fn layout<S: Into<SizeInfo>>(s: S, align: usize) -> DstLayout {
            DstLayout { size_info: s.into(), align: NonZeroUsize::new(align).unwrap() }
        }

        /// This macro accepts arguments in the form of:
        ///
        ///           layout(_, _, _).validate(_, _, _), Ok(Some((_, _)))
        ///                  |  |  |           |  |  |            |  |
        ///    base_size ----+  |  |           |  |  |            |  |
        ///    align -----------+  |           |  |  |            |  |
        ///    trailing_size ------+           |  |  |            |  |
        ///    addr ---------------------------+  |  |            |  |
        ///    bytes_len -------------------------+  |            |  |
        ///    cast_type ----------------------------+            |  |
        ///    elems ---------------------------------------------+  |
        ///    split_at ---------------------------------------------+
        ///
        /// `.validate` is shorthand for `.validate_cast_and_convert_metadata`
        /// for brevity.
        ///
        /// Each argument can either be an iterator or a wildcard. Each
        /// wildcarded variable is implicitly replaced by an iterator over a
        /// representative sample of values for that variable. Each `test!`
        /// invocation iterates over every combination of values provided by
        /// each variable's iterator (ie, the cartesian product) and validates
        /// that the results are expected.
        ///
        /// The final argument uses the same syntax, but it has a different
        /// meaning:
        /// - If it is `Ok(pat)`, then the pattern `pat` is supplied to
        ///   a matching assert to validate the computed result for each
        ///   combination of input values.
        /// - If it is `Err(Some(msg) | None)`, then `test!` validates that the
        ///   call to `validate_cast_and_convert_metadata` panics with the given
        ///   panic message or, if the current Rust toolchain version is too
        ///   early to support panicking in `const fn`s, panics with *some*
        ///   message. In the latter case, the `const_panic!` macro is used,
        ///   which emits code which causes a non-panicking error at const eval
        ///   time, but which does panic when invoked at runtime. Thus, it is
        ///   merely difficult to predict the *value* of this panic. We deem
        ///   that testing against the real panic strings on stable and nightly
        ///   toolchains is enough to ensure correctness.
        ///
        /// Note that the meta-variables that match these variables have the
        /// `tt` type, and some valid expressions are not valid `tt`s (such as
        /// `a..b`). In this case, wrap the expression in parentheses, and it
        /// will become valid `tt`.
        macro_rules! test {
                ($(:$sizes:expr =>)?
                    layout($size:tt, $align:tt)
                    .validate($addr:tt, $bytes_len:tt, $cast_type:tt), $expect:pat $(,)?
                ) => {
                    itertools::iproduct!(
                        test!(@generate_size $size),
                        test!(@generate_align $align),
                        test!(@generate_usize $addr),
                        test!(@generate_usize $bytes_len),
                        test!(@generate_cast_type $cast_type)
                    ).for_each(|(size_info, align, addr, bytes_len, cast_type)| {
                        // Temporarily disable the panic hook installed by the test
                        // harness. If we don't do this, all panic messages will be
                        // kept in an internal log. On its own, this isn't a
                        // problem, but if a non-caught panic ever happens (ie, in
                        // code later in this test not in this macro), all of the
                        // previously-buffered messages will be dumped, hiding the
                        // real culprit.
                        let previous_hook = std::panic::take_hook();
                        // I don't understand why, but this seems to be required in
                        // addition to the previous line.
                        std::panic::set_hook(Box::new(|_| {}));
                        let actual = std::panic::catch_unwind(|| {
                            layout(size_info, align).validate_cast_and_convert_metadata(addr, bytes_len, cast_type)
                        }).map_err(|d| {
                            let msg = d.downcast::<&'static str>().ok().map(|s| *s.as_ref());
                            assert!(msg.is_some() || cfg!(not(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)), "non-string panic messages are not permitted when `--cfg zerocopy_panic_in_const_and_vec_try_reserve` is set");
                            msg
                        });
                        std::panic::set_hook(previous_hook);

                        assert!(
                            matches!(actual, $expect),
                            "layout({:?}, {}).validate_cast_and_convert_metadata({}, {}, {:?})" ,size_info, align, addr, bytes_len, cast_type
                        );
                    });
                };
                (@generate_usize _) => { 0..8 };
                // Generate sizes for both Sized and !Sized types.
                (@generate_size _) => {
                    test!(@generate_size (_)).chain(test!(@generate_size (_, _)))
                };
                // Generate sizes for both Sized and !Sized types by chaining
                // specified iterators for each.
                (@generate_size ($sized_sizes:tt | $unsized_sizes:tt)) => {
                    test!(@generate_size ($sized_sizes)).chain(test!(@generate_size $unsized_sizes))
                };
                // Generate sizes for Sized types.
                (@generate_size (_)) => { test!(@generate_size (0..8)) };
                (@generate_size ($sizes:expr)) => { $sizes.into_iter().map(Into::<SizeInfo>::into) };
                // Generate sizes for !Sized types.
                (@generate_size ($min_sizes:tt, $elem_sizes:tt)) => {
                    itertools::iproduct!(
                        test!(@generate_min_size $min_sizes),
                        test!(@generate_elem_size $elem_sizes)
                    ).map(Into::<SizeInfo>::into)
                };
                (@generate_fixed_size _) => { (0..8).into_iter().map(Into::<SizeInfo>::into) };
                (@generate_min_size _) => { 0..8 };
                (@generate_elem_size _) => { 1..8 };
                (@generate_align _) => { [1, 2, 4, 8, 16] };
                (@generate_opt_usize _) => { [None].into_iter().chain((0..8).map(Some).into_iter()) };
                (@generate_cast_type _) => { [CastType::Prefix, CastType::Suffix] };
                (@generate_cast_type $variant:ident) => { [CastType::$variant] };
                // Some expressions need to be wrapped in parentheses in order to be
                // valid `tt`s (required by the top match pattern). See the comment
                // below for more details. This arm removes these parentheses to
                // avoid generating an `unused_parens` warning.
                (@$_:ident ($vals:expr)) => { $vals };
                (@$_:ident $vals:expr) => { $vals };
            }

        const EVENS: [usize; 8] = [0, 2, 4, 6, 8, 10, 12, 14];
        const ODDS: [usize; 8] = [1, 3, 5, 7, 9, 11, 13, 15];

        // base_size is too big for the memory region.
        test!(
            layout(((1..8) | ((1..8), (1..8))), _).validate([0], [0], _),
            Ok(Err(MetadataCastError::Size))
        );
        test!(
            layout(((2..8) | ((2..8), (2..8))), _).validate([0], [1], Prefix),
            Ok(Err(MetadataCastError::Size))
        );
        test!(
            layout(((2..8) | ((2..8), (2..8))), _).validate([0x1000_0000 - 1], [1], Suffix),
            Ok(Err(MetadataCastError::Size))
        );

        // addr is unaligned for prefix cast
        test!(layout(_, [2]).validate(ODDS, _, Prefix), Ok(Err(MetadataCastError::Alignment)));
        test!(layout(_, [2]).validate(ODDS, _, Prefix), Ok(Err(MetadataCastError::Alignment)));

        // addr is aligned, but end of buffer is unaligned for suffix cast
        test!(layout(_, [2]).validate(EVENS, ODDS, Suffix), Ok(Err(MetadataCastError::Alignment)));
        test!(layout(_, [2]).validate(EVENS, ODDS, Suffix), Ok(Err(MetadataCastError::Alignment)));

        // Unfortunately, these constants cannot easily be used in the
        // implementation of `validate_cast_and_convert_metadata`, since
        // `panic!` consumes a string literal, not an expression.
        //
        // It's important that these messages be in a separate module. If they
        // were at the function's top level, we'd pass them to `test!` as, e.g.,
        // `Err(TRAILING)`, which would run into a subtle Rust footgun - the
        // `TRAILING` identifier would be treated as a pattern to match rather
        // than a value to check for equality.
        mod msgs {
            pub(super) const TRAILING: &str =
                "attempted to cast to slice type with zero-sized element";
            pub(super) const OVERFLOW: &str = "`addr` + `bytes_len` > usize::MAX";
        }

        // casts with ZST trailing element types are unsupported
        test!(layout((_, [0]), _).validate(_, _, _), Err(Some(msgs::TRAILING) | None),);

        // addr + bytes_len must not overflow usize
        test!(layout(_, _).validate([usize::MAX], (1..100), _), Err(Some(msgs::OVERFLOW) | None));
        test!(layout(_, _).validate((1..100), [usize::MAX], _), Err(Some(msgs::OVERFLOW) | None));
        test!(
            layout(_, _).validate(
                [usize::MAX / 2 + 1, usize::MAX],
                [usize::MAX / 2 + 1, usize::MAX],
                _
            ),
            Err(Some(msgs::OVERFLOW) | None)
        );

        // Validates that `validate_cast_and_convert_metadata` satisfies its own
        // documented safety postconditions, and also a few other properties
        // that aren't documented but we want to guarantee anyway.
        fn validate_behavior(
            (layout, addr, bytes_len, cast_type): (DstLayout, usize, usize, CastType),
        ) {
            if let Ok((elems, split_at)) =
                layout.validate_cast_and_convert_metadata(addr, bytes_len, cast_type)
            {
                let (size_info, align) = (layout.size_info, layout.align);
                let debug_str = format!(
                    "layout({:?}, {}).validate_cast_and_convert_metadata({}, {}, {:?}) => ({}, {})",
                    size_info, align, addr, bytes_len, cast_type, elems, split_at
                );

                // If this is a sized type (no trailing slice), then `elems` is
                // meaningless, but in practice we set it to 0. Callers are not
                // allowed to rely on this, but a lot of math is nicer if
                // they're able to, and some callers might accidentally do that.
                let sized = matches!(layout.size_info, SizeInfo::Sized { .. });
                assert!(!(sized && elems != 0), "{}", debug_str);

                let resulting_size = match layout.size_info {
                    SizeInfo::Sized { size } => size,
                    SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }) => {
                        let padded_size = |elems| {
                            let without_padding = offset + elems * elem_size;
                            without_padding + util::padding_needed_for(without_padding, align)
                        };

                        let resulting_size = padded_size(elems);
                        // Test that `validate_cast_and_convert_metadata`
                        // computed the largest possible value that fits in the
                        // given range.
                        assert!(padded_size(elems + 1) > bytes_len, "{}", debug_str);
                        resulting_size
                    }
                };

                // Test safety postconditions guaranteed by
                // `validate_cast_and_convert_metadata`.
                assert!(resulting_size <= bytes_len, "{}", debug_str);
                match cast_type {
                    CastType::Prefix => {
                        assert_eq!(addr % align, 0, "{}", debug_str);
                        assert_eq!(resulting_size, split_at, "{}", debug_str);
                    }
                    CastType::Suffix => {
                        assert_eq!(split_at, bytes_len - resulting_size, "{}", debug_str);
                        assert_eq!((addr + split_at) % align, 0, "{}", debug_str);
                    }
                }
            } else {
                let min_size = match layout.size_info {
                    SizeInfo::Sized { size } => size,
                    SizeInfo::SliceDst(TrailingSliceLayout { offset, .. }) => {
                        offset + util::padding_needed_for(offset, layout.align)
                    }
                };

                // If a cast is invalid, it is either because...
                // 1. there are insufficent bytes at the given region for type:
                let insufficient_bytes = bytes_len < min_size;
                // 2. performing the cast would misalign type:
                let base = match cast_type {
                    CastType::Prefix => 0,
                    CastType::Suffix => bytes_len,
                };
                let misaligned = (base + addr) % layout.align != 0;

                assert!(insufficient_bytes || misaligned);
            }
        }

        let sizes = 0..8;
        let elem_sizes = 1..8;
        let size_infos = sizes
            .clone()
            .map(Into::<SizeInfo>::into)
            .chain(itertools::iproduct!(sizes, elem_sizes).map(Into::<SizeInfo>::into));
        let layouts = itertools::iproduct!(size_infos, [1, 2, 4, 8, 16, 32])
                .filter(|(size_info, align)| !matches!(size_info, SizeInfo::Sized { size } if size % align != 0))
                .map(|(size_info, align)| layout(size_info, align));
        itertools::iproduct!(layouts, 0..8, 0..8, [CastType::Prefix, CastType::Suffix])
            .for_each(validate_behavior);
    }

    #[test]
    #[cfg(__ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS)]
    fn test_validate_rust_layout() {
        use crate::util::testutil::*;
        use core::{
            convert::TryInto as _,
            ptr::{self, NonNull},
        };

        // This test synthesizes pointers with various metadata and uses Rust's
        // built-in APIs to confirm that Rust makes decisions about type layout
        // which are consistent with what we believe is guaranteed by the
        // language. If this test fails, it doesn't just mean our code is wrong
        // - it means we're misunderstanding the language's guarantees.

        #[derive(Debug)]
        struct MacroArgs {
            offset: usize,
            align: NonZeroUsize,
            elem_size: Option<usize>,
        }

        /// # Safety
        ///
        /// `test` promises to only call `addr_of_slice_field` on a `NonNull<T>`
        /// which points to a valid `T`.
        ///
        /// `with_elems` must produce a pointer which points to a valid `T`.
        fn test<T: ?Sized, W: Fn(usize) -> NonNull<T>>(
            args: MacroArgs,
            with_elems: W,
            addr_of_slice_field: Option<fn(NonNull<T>) -> NonNull<u8>>,
        ) {
            let dst = args.elem_size.is_some();
            let layout = {
                let size_info = match args.elem_size {
                    Some(elem_size) => {
                        SizeInfo::SliceDst(TrailingSliceLayout { offset: args.offset, elem_size })
                    }
                    None => SizeInfo::Sized {
                        // Rust only supports types whose sizes are a multiple
                        // of their alignment. If the macro created a type like
                        // this:
                        //
                        //   #[repr(C, align(2))]
                        //   struct Foo([u8; 1]);
                        //
                        // ...then Rust will automatically round the type's size
                        // up to 2.
                        size: args.offset + util::padding_needed_for(args.offset, args.align),
                    },
                };
                DstLayout { size_info, align: args.align }
            };

            for elems in 0..128 {
                let ptr = with_elems(elems);

                if let Some(addr_of_slice_field) = addr_of_slice_field {
                    let slc_field_ptr = addr_of_slice_field(ptr).as_ptr();
                    // SAFETY: Both `slc_field_ptr` and `ptr` are pointers to
                    // the same valid Rust object.
                    #[allow(clippy::incompatible_msrv)]
                    // Work around https://github.com/rust-lang/rust-clippy/issues/12280
                    let offset: usize =
                        unsafe { slc_field_ptr.byte_offset_from(ptr.as_ptr()).try_into().unwrap() };
                    assert_eq!(offset, args.offset);
                }

                // SAFETY: `ptr` points to a valid `T`.
                let (size, align) = unsafe {
                    (mem::size_of_val_raw(ptr.as_ptr()), mem::align_of_val_raw(ptr.as_ptr()))
                };

                // Avoid expensive allocation when running under Miri.
                let assert_msg = if !cfg!(miri) {
                    format!("\n{:?}\nsize:{}, align:{}", args, size, align)
                } else {
                    String::new()
                };

                let without_padding =
                    args.offset + args.elem_size.map(|elem_size| elems * elem_size).unwrap_or(0);
                assert!(size >= without_padding, "{}", assert_msg);
                assert_eq!(align, args.align.get(), "{}", assert_msg);

                // This encodes the most important part of the test: our
                // understanding of how Rust determines the layout of repr(C)
                // types. Sized repr(C) types are trivial, but DST types have
                // some subtlety. Note that:
                // - For sized types, `without_padding` is just the size of the
                //   type that we constructed for `Foo`. Since we may have
                //   requested a larger alignment, `Foo` may actually be larger
                //   than this, hence `padding_needed_for`.
                // - For unsized types, `without_padding` is dynamically
                //   computed from the offset, the element size, and element
                //   count. We expect that the size of the object should be
                //   `offset + elem_size * elems` rounded up to the next
                //   alignment.
                let expected_size =
                    without_padding + util::padding_needed_for(without_padding, args.align);
                assert_eq!(expected_size, size, "{}", assert_msg);

                // For zero-sized element types,
                // `validate_cast_and_convert_metadata` just panics, so we skip
                // testing those types.
                if args.elem_size.map(|elem_size| elem_size > 0).unwrap_or(true) {
                    let addr = ptr.addr().get();
                    let (got_elems, got_split_at) = layout
                        .validate_cast_and_convert_metadata(addr, size, CastType::Prefix)
                        .unwrap();
                    // Avoid expensive allocation when running under Miri.
                    let assert_msg = if !cfg!(miri) {
                        format!(
                            "{}\nvalidate_cast_and_convert_metadata({}, {})",
                            assert_msg, addr, size,
                        )
                    } else {
                        String::new()
                    };
                    assert_eq!(got_split_at, size, "{}", assert_msg);
                    if dst {
                        assert!(got_elems >= elems, "{}", assert_msg);
                        if got_elems != elems {
                            // If `validate_cast_and_convert_metadata`
                            // returned more elements than `elems`, that
                            // means that `elems` is not the maximum number
                            // of elements that can fit in `size` - in other
                            // words, there is enough padding at the end of
                            // the value to fit at least one more element.
                            // If we use this metadata to synthesize a
                            // pointer, despite having a different element
                            // count, we still expect it to have the same
                            // size.
                            let got_ptr = with_elems(got_elems);
                            // SAFETY: `got_ptr` is a pointer to a valid `T`.
                            let size_of_got_ptr = unsafe { mem::size_of_val_raw(got_ptr.as_ptr()) };
                            assert_eq!(size_of_got_ptr, size, "{}", assert_msg);
                        }
                    } else {
                        // For sized casts, the returned element value is
                        // technically meaningless, and we don't guarantee any
                        // particular value. In practice, it's always zero.
                        assert_eq!(got_elems, 0, "{}", assert_msg)
                    }
                }
            }
        }

        macro_rules! validate_against_rust {
                ($offset:literal, $align:literal $(, $elem_size:literal)?) => {{
                    #[repr(C, align($align))]
                    struct Foo([u8; $offset]$(, [[u8; $elem_size]])?);

                    let args = MacroArgs {
                        offset: $offset,
                        align: $align.try_into().unwrap(),
                        elem_size: {
                            #[allow(unused)]
                            let ret = None::<usize>;
                            $(let ret = Some($elem_size);)?
                            ret
                        }
                    };

                    #[repr(C, align($align))]
                    struct FooAlign;
                    // Create an aligned buffer to use in order to synthesize
                    // pointers to `Foo`. We don't ever load values from these
                    // pointers - we just do arithmetic on them - so having a "real"
                    // block of memory as opposed to a validly-aligned-but-dangling
                    // pointer is only necessary to make Miri happy since we run it
                    // with "strict provenance" checking enabled.
                    let aligned_buf = Align::<_, FooAlign>::new([0u8; 1024]);
                    let with_elems = |elems| {
                        let slc = NonNull::slice_from_raw_parts(NonNull::from(&aligned_buf.t), elems);
                        #[allow(clippy::as_conversions)]
                        NonNull::new(slc.as_ptr() as *mut Foo).unwrap()
                    };
                    let addr_of_slice_field = {
                        #[allow(unused)]
                        let f = None::<fn(NonNull<Foo>) -> NonNull<u8>>;
                        $(
                            // SAFETY: `test` promises to only call `f` with a `ptr`
                            // to a valid `Foo`.
                            let f: Option<fn(NonNull<Foo>) -> NonNull<u8>> = Some(|ptr: NonNull<Foo>| unsafe {
                                NonNull::new(ptr::addr_of_mut!((*ptr.as_ptr()).1)).unwrap().cast::<u8>()
                            });
                            let _ = $elem_size;
                        )?
                        f
                    };

                    test::<Foo, _>(args, with_elems, addr_of_slice_field);
                }};
            }

        // Every permutation of:
        // - offset in [0, 4]
        // - align in [1, 16]
        // - elem_size in [0, 4] (plus no elem_size)
        validate_against_rust!(0, 1);
        validate_against_rust!(0, 1, 0);
        validate_against_rust!(0, 1, 1);
        validate_against_rust!(0, 1, 2);
        validate_against_rust!(0, 1, 3);
        validate_against_rust!(0, 1, 4);
        validate_against_rust!(0, 2);
        validate_against_rust!(0, 2, 0);
        validate_against_rust!(0, 2, 1);
        validate_against_rust!(0, 2, 2);
        validate_against_rust!(0, 2, 3);
        validate_against_rust!(0, 2, 4);
        validate_against_rust!(0, 4);
        validate_against_rust!(0, 4, 0);
        validate_against_rust!(0, 4, 1);
        validate_against_rust!(0, 4, 2);
        validate_against_rust!(0, 4, 3);
        validate_against_rust!(0, 4, 4);
        validate_against_rust!(0, 8);
        validate_against_rust!(0, 8, 0);
        validate_against_rust!(0, 8, 1);
        validate_against_rust!(0, 8, 2);
        validate_against_rust!(0, 8, 3);
        validate_against_rust!(0, 8, 4);
        validate_against_rust!(0, 16);
        validate_against_rust!(0, 16, 0);
        validate_against_rust!(0, 16, 1);
        validate_against_rust!(0, 16, 2);
        validate_against_rust!(0, 16, 3);
        validate_against_rust!(0, 16, 4);
        validate_against_rust!(1, 1);
        validate_against_rust!(1, 1, 0);
        validate_against_rust!(1, 1, 1);
        validate_against_rust!(1, 1, 2);
        validate_against_rust!(1, 1, 3);
        validate_against_rust!(1, 1, 4);
        validate_against_rust!(1, 2);
        validate_against_rust!(1, 2, 0);
        validate_against_rust!(1, 2, 1);
        validate_against_rust!(1, 2, 2);
        validate_against_rust!(1, 2, 3);
        validate_against_rust!(1, 2, 4);
        validate_against_rust!(1, 4);
        validate_against_rust!(1, 4, 0);
        validate_against_rust!(1, 4, 1);
        validate_against_rust!(1, 4, 2);
        validate_against_rust!(1, 4, 3);
        validate_against_rust!(1, 4, 4);
        validate_against_rust!(1, 8);
        validate_against_rust!(1, 8, 0);
        validate_against_rust!(1, 8, 1);
        validate_against_rust!(1, 8, 2);
        validate_against_rust!(1, 8, 3);
        validate_against_rust!(1, 8, 4);
        validate_against_rust!(1, 16);
        validate_against_rust!(1, 16, 0);
        validate_against_rust!(1, 16, 1);
        validate_against_rust!(1, 16, 2);
        validate_against_rust!(1, 16, 3);
        validate_against_rust!(1, 16, 4);
        validate_against_rust!(2, 1);
        validate_against_rust!(2, 1, 0);
        validate_against_rust!(2, 1, 1);
        validate_against_rust!(2, 1, 2);
        validate_against_rust!(2, 1, 3);
        validate_against_rust!(2, 1, 4);
        validate_against_rust!(2, 2);
        validate_against_rust!(2, 2, 0);
        validate_against_rust!(2, 2, 1);
        validate_against_rust!(2, 2, 2);
        validate_against_rust!(2, 2, 3);
        validate_against_rust!(2, 2, 4);
        validate_against_rust!(2, 4);
        validate_against_rust!(2, 4, 0);
        validate_against_rust!(2, 4, 1);
        validate_against_rust!(2, 4, 2);
        validate_against_rust!(2, 4, 3);
        validate_against_rust!(2, 4, 4);
        validate_against_rust!(2, 8);
        validate_against_rust!(2, 8, 0);
        validate_against_rust!(2, 8, 1);
        validate_against_rust!(2, 8, 2);
        validate_against_rust!(2, 8, 3);
        validate_against_rust!(2, 8, 4);
        validate_against_rust!(2, 16);
        validate_against_rust!(2, 16, 0);
        validate_against_rust!(2, 16, 1);
        validate_against_rust!(2, 16, 2);
        validate_against_rust!(2, 16, 3);
        validate_against_rust!(2, 16, 4);
        validate_against_rust!(3, 1);
        validate_against_rust!(3, 1, 0);
        validate_against_rust!(3, 1, 1);
        validate_against_rust!(3, 1, 2);
        validate_against_rust!(3, 1, 3);
        validate_against_rust!(3, 1, 4);
        validate_against_rust!(3, 2);
        validate_against_rust!(3, 2, 0);
        validate_against_rust!(3, 2, 1);
        validate_against_rust!(3, 2, 2);
        validate_against_rust!(3, 2, 3);
        validate_against_rust!(3, 2, 4);
        validate_against_rust!(3, 4);
        validate_against_rust!(3, 4, 0);
        validate_against_rust!(3, 4, 1);
        validate_against_rust!(3, 4, 2);
        validate_against_rust!(3, 4, 3);
        validate_against_rust!(3, 4, 4);
        validate_against_rust!(3, 8);
        validate_against_rust!(3, 8, 0);
        validate_against_rust!(3, 8, 1);
        validate_against_rust!(3, 8, 2);
        validate_against_rust!(3, 8, 3);
        validate_against_rust!(3, 8, 4);
        validate_against_rust!(3, 16);
        validate_against_rust!(3, 16, 0);
        validate_against_rust!(3, 16, 1);
        validate_against_rust!(3, 16, 2);
        validate_against_rust!(3, 16, 3);
        validate_against_rust!(3, 16, 4);
        validate_against_rust!(4, 1);
        validate_against_rust!(4, 1, 0);
        validate_against_rust!(4, 1, 1);
        validate_against_rust!(4, 1, 2);
        validate_against_rust!(4, 1, 3);
        validate_against_rust!(4, 1, 4);
        validate_against_rust!(4, 2);
        validate_against_rust!(4, 2, 0);
        validate_against_rust!(4, 2, 1);
        validate_against_rust!(4, 2, 2);
        validate_against_rust!(4, 2, 3);
        validate_against_rust!(4, 2, 4);
        validate_against_rust!(4, 4);
        validate_against_rust!(4, 4, 0);
        validate_against_rust!(4, 4, 1);
        validate_against_rust!(4, 4, 2);
        validate_against_rust!(4, 4, 3);
        validate_against_rust!(4, 4, 4);
        validate_against_rust!(4, 8);
        validate_against_rust!(4, 8, 0);
        validate_against_rust!(4, 8, 1);
        validate_against_rust!(4, 8, 2);
        validate_against_rust!(4, 8, 3);
        validate_against_rust!(4, 8, 4);
        validate_against_rust!(4, 16);
        validate_against_rust!(4, 16, 0);
        validate_against_rust!(4, 16, 1);
        validate_against_rust!(4, 16, 2);
        validate_against_rust!(4, 16, 3);
        validate_against_rust!(4, 16, 4);
    }
}