zerocopy/pointer/ptr.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
// Copyright 2023 The Fuchsia Authors
//
// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
// This file may not be copied, modified, or distributed except according to
// those terms.
use core::ptr::NonNull;
use crate::{util::AsAddress, CastType, KnownLayout};
/// Module used to gate access to [`Ptr`]'s fields.
mod def {
#[cfg(doc)]
use super::invariant;
use super::Invariants;
use core::{marker::PhantomData, ptr::NonNull};
/// A raw pointer with more restrictions.
///
/// `Ptr<T>` is similar to [`NonNull<T>`], but it is more restrictive in the
/// following ways (note that these requirements only hold of non-zero-sized
/// referents):
/// - It must derive from a valid allocation.
/// - It must reference a byte range which is contained inside the
/// allocation from which it derives.
/// - As a consequence, the byte range it references must have a size
/// which does not overflow `isize`.
///
/// Depending on how `Ptr` is parameterized, it may have additional
/// invariants:
/// - `ptr` conforms to the aliasing invariant of
/// [`I::Aliasing`](invariant::Aliasing).
/// - `ptr` conforms to the alignment invariant of
/// [`I::Alignment`](invariant::Alignment).
/// - `ptr` conforms to the validity invariant of
/// [`I::Validity`](invariant::Validity).
///
/// `Ptr<'a, T>` is [covariant] in `'a` and `T`.
///
/// [covariant]: https://doc.rust-lang.org/reference/subtyping.html
pub struct Ptr<'a, T, I>
where
T: 'a + ?Sized,
I: Invariants,
{
/// # Invariants
///
/// 0. If `ptr`'s referent is not zero sized, then `ptr` is derived from
/// some valid Rust allocation, `A`.
/// 1. If `ptr`'s referent is not zero sized, then `ptr` has valid
/// provenance for `A`.
/// 2. If `ptr`'s referent is not zero sized, then `ptr` addresses a
/// byte range which is entirely contained in `A`.
/// 3. `ptr` addresses a byte range whose length fits in an `isize`.
/// 4. `ptr` addresses a byte range which does not wrap around the
/// address space.
/// 5. If `ptr`'s referent is not zero sized,`A` is guaranteed to live
/// for at least `'a`.
/// 6. `T: 'a`.
/// 7. `ptr` conforms to the aliasing invariant of
/// [`I::Aliasing`](invariant::Aliasing).
/// 8. `ptr` conforms to the alignment invariant of
/// [`I::Alignment`](invariant::Alignment).
/// 9. `ptr` conforms to the validity invariant of
/// [`I::Validity`](invariant::Validity).
// SAFETY: `NonNull<T>` is covariant over `T` [1].
//
// [1]: https://doc.rust-lang.org/std/ptr/struct.NonNull.html
ptr: NonNull<T>,
// SAFETY: `&'a ()` is covariant over `'a` [1].
//
// [1]: https://doc.rust-lang.org/reference/subtyping.html#variance
_invariants: PhantomData<&'a I>,
}
impl<'a, T, I> Ptr<'a, T, I>
where
T: 'a + ?Sized,
I: Invariants,
{
/// Constructs a `Ptr` from a [`NonNull`].
///
/// # Safety
///
/// The caller promises that:
///
/// 0. If `ptr`'s referent is not zero sized, then `ptr` is derived from
/// some valid Rust allocation, `A`.
/// 1. If `ptr`'s referent is not zero sized, then `ptr` has valid
/// provenance for `A`.
/// 2. If `ptr`'s referent is not zero sized, then `ptr` addresses a
/// byte range which is entirely contained in `A`.
/// 3. `ptr` addresses a byte range whose length fits in an `isize`.
/// 4. `ptr` addresses a byte range which does not wrap around the
/// address space.
/// 5. If `ptr`'s referent is not zero sized, then `A` is guaranteed to
/// live for at least `'a`.
/// 6. `ptr` conforms to the aliasing invariant of
/// [`I::Aliasing`](invariant::Aliasing).
/// 7. `ptr` conforms to the alignment invariant of
/// [`I::Alignment`](invariant::Alignment).
/// 8. `ptr` conforms to the validity invariant of
/// [`I::Validity`](invariant::Validity).
pub(super) unsafe fn new(ptr: NonNull<T>) -> Ptr<'a, T, I> {
// SAFETY: The caller has promised to satisfy all safety invariants
// of `Ptr`.
Self { ptr, _invariants: PhantomData }
}
/// Converts this `Ptr<T>` to a [`NonNull<T>`].
///
/// Note that this method does not consume `self`. The caller should
/// watch out for `unsafe` code which uses the returned `NonNull` in a
/// way that violates the safety invariants of `self`.
pub(crate) fn as_non_null(&self) -> NonNull<T> {
self.ptr
}
}
}
#[allow(unreachable_pub)] // This is a false positive on our MSRV toolchain.
pub use def::Ptr;
/// Used to define the system of [invariants][invariant] of `Ptr`.
macro_rules! define_system {
($(#[$system_attr:meta])* $system:ident {
$($(#[$set_attr:meta])* $set:ident {
$( $(#[$elem_attr:meta])* $elem:ident $(< $($stronger_elem:ident)|*)?,)*
})*
}) => {
/// No requirement - any invariant is allowed.
#[allow(missing_copy_implementations, missing_debug_implementations)]
pub enum Any {}
/// `Self` imposes a requirement at least as strict as `I`.
pub trait AtLeast<I> {}
mod sealed {
pub trait Sealed {}
impl<$($set,)*> Sealed for ($($set,)*)
where
$($set: super::$set,)*
{}
impl Sealed for super::Any {}
$($(
impl Sealed for super::$elem {}
)*)*
}
$(#[$system_attr])*
///
#[doc = concat!(
stringify!($system),
" are encoded as tuples of (",
)]
$(#[doc = concat!(
"[`",
stringify!($set),
"`],"
)])*
#[doc = concat!(
").",
)]
/// This trait is implemented for such tuples, and can be used to
/// project out the components of these tuples via its associated types.
pub trait $system: sealed::Sealed {
$(
$(#[$set_attr])*
type $set: $set;
)*
}
impl<$($set,)*> $system for ($($set,)*)
where
$($set: self::$set,)*
{
$(type $set = $set;)*
}
$(
$(#[$set_attr])*
pub trait $set: 'static + sealed::Sealed {
// This only exists for use in
// `into_exclusive_or_post_monomorphization_error`.
#[doc(hidden)]
const NAME: &'static str;
}
impl $set for Any {
const NAME: &'static str = stringify!(Any);
}
$(
$(#[$elem_attr])*
#[allow(missing_copy_implementations, missing_debug_implementations)]
pub enum $elem {}
$(#[$elem_attr])*
impl $set for $elem {
const NAME: &'static str = stringify!($elem);
}
)*
)*
$($(
impl AtLeast<Any> for $elem {}
impl AtLeast<$elem> for $elem {}
$($(impl AtLeast<$elem> for $stronger_elem {})*)?
)*)*
};
}
/// The parameterized invariants of a [`Ptr`].
///
/// Invariants are encoded as ([`Aliasing`], [`Alignment`], [`Validity`])
/// triples implementing the [`Invariants`] trait.
#[doc(hidden)]
pub mod invariant {
define_system! {
/// The invariants of a [`Ptr`][super::Ptr].
Invariants {
/// The aliasing invariant of a [`Ptr`][super::Ptr].
Aliasing {
/// The `Ptr<'a, T>` adheres to the aliasing rules of a `&'a T`.
///
/// The referent of a shared-aliased `Ptr` may be concurrently
/// referenced by any number of shared-aliased `Ptr` or `&T`
/// references, and may not be concurrently referenced by any
/// exclusively-aliased `Ptr`s or `&mut T` references. The
/// referent must not be mutated, except via [`UnsafeCell`]s.
///
/// [`UnsafeCell`]: core::cell::UnsafeCell
Shared < Exclusive,
/// The `Ptr<'a, T>` adheres to the aliasing rules of a `&'a mut
/// T`.
///
/// The referent of an exclusively-aliased `Ptr` may not be
/// concurrently referenced by any other `Ptr`s or references,
/// and may not be accessed (read or written) other than via
/// this `Ptr`.
Exclusive,
}
/// The alignment invariant of a [`Ptr`][super::Ptr].
Alignment {
/// The referent is aligned: for `Ptr<T>`, the referent's
/// address is a multiple of the `T`'s alignment.
Aligned,
}
/// The validity invariant of a [`Ptr`][super::Ptr].
Validity {
/// The byte ranges initialized in `T` are also initialized in
/// the referent.
///
/// Formally: uninitialized bytes may only be present in
/// `Ptr<T>`'s referent where they are guaranteed to be present
/// in `T`. This is a dynamic property: if, at a particular byte
/// offset, a valid enum discriminant is set, the subsequent
/// bytes may only have uninitialized bytes as specificed by the
/// corresponding enum.
///
/// Formally, given `len = size_of_val_raw(ptr)`, at every byte
/// offset, `b`, in the range `[0, len)`:
/// - If, in any instance `t: T` of length `len`, the byte at
/// offset `b` in `t` is initialized, then the byte at offset
/// `b` within `*ptr` must be initialized.
/// - Let `c` be the contents of the byte range `[0, b)` in
/// `*ptr`. Let `S` be the subset of valid instances of `T` of
/// length `len` which contain `c` in the offset range `[0,
/// b)`. If, in any instance of `t: T` in `S`, the byte at
/// offset `b` in `t` is initialized, then the byte at offset
/// `b` in `*ptr` must be initialized.
///
/// Pragmatically, this means that if `*ptr` is guaranteed to
/// contain an enum type at a particular offset, and the enum
/// discriminant stored in `*ptr` corresponds to a valid
/// variant of that enum type, then it is guaranteed that the
/// appropriate bytes of `*ptr` are initialized as defined by
/// that variant's bit validity (although note that the
/// variant may contain another enum type, in which case the
/// same rules apply depending on the state of its
/// discriminant, and so on recursively).
AsInitialized < Initialized | Valid,
/// The byte ranges in the referent are fully initialized. In
/// other words, if the referent is `N` bytes long, then it
/// contains a bit-valid `[u8; N]`.
Initialized,
/// The referent is bit-valid for `T`.
Valid,
}
}
}
}
pub(crate) use invariant::*;
/// External trait implementations on [`Ptr`].
mod _external {
use super::*;
use core::fmt::{Debug, Formatter};
/// SAFETY: Shared pointers are safely `Copy`. We do not implement `Copy`
/// for exclusive pointers, since at most one may exist at a time. `Ptr`'s
/// other invariants are unaffected by the number of references that exist
/// to `Ptr`'s referent.
impl<'a, T, I> Copy for Ptr<'a, T, I>
where
T: 'a + ?Sized,
I: Invariants,
Shared: AtLeast<I::Aliasing>,
{
}
/// SAFETY: Shared pointers are safely `Clone`. We do not implement `Clone`
/// for exclusive pointers, since at most one may exist at a time. `Ptr`'s
/// other invariants are unaffected by the number of references that exist
/// to `Ptr`'s referent.
impl<'a, T, I> Clone for Ptr<'a, T, I>
where
T: 'a + ?Sized,
I: Invariants,
Shared: AtLeast<I::Aliasing>,
{
#[inline]
fn clone(&self) -> Self {
*self
}
}
impl<'a, T, I> Debug for Ptr<'a, T, I>
where
T: 'a + ?Sized,
I: Invariants,
{
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
self.as_non_null().fmt(f)
}
}
}
/// Methods for converting to and from `Ptr` and Rust's safe reference types.
mod _conversions {
use super::*;
use crate::util::{AlignmentVariance, Covariant, TransparentWrapper, ValidityVariance};
/// `&'a T` → `Ptr<'a, T>`
impl<'a, T> Ptr<'a, T, (Shared, Aligned, Valid)>
where
T: 'a + ?Sized,
{
/// Constructs a `Ptr` from a shared reference.
#[doc(hidden)]
#[inline]
pub fn from_ref(ptr: &'a T) -> Self {
let ptr = NonNull::from(ptr);
// SAFETY:
// 0. If `ptr`'s referent is not zero sized, then `ptr`, by
// invariant on `&'a T`, is derived from some valid Rust
// allocation, `A`.
// 1. If `ptr`'s referent is not zero sized, then `ptr`, by
// invariant on `&'a T`, has valid provenance for `A`.
// 2. If `ptr`'s referent is not zero sized, then `ptr`, by
// invariant on `&'a T`, addresses a byte range which is entirely
// contained in `A`.
// 3. `ptr`, by invariant on `&'a T`, addresses a byte range whose
// length fits in an `isize`.
// 4. `ptr`, by invariant on `&'a T`, addresses a byte range which
// does not wrap around the address space.
// 5. If `ptr`'s referent is not zero sized, then `A`, by invariant
// on `&'a T`, is guaranteed to live for at least `'a`.
// 6. `T: 'a`.
// 7. `ptr`, by invariant on `&'a T`, conforms to the aliasing
// invariant of `Shared`.
// 8. `ptr`, by invariant on `&'a T`, conforms to the alignment
// invariant of `Aligned`.
// 9. `ptr`, by invariant on `&'a T`, conforms to the validity
// invariant of `Valid`.
unsafe { Self::new(ptr) }
}
}
/// `&'a mut T` → `Ptr<'a, T>`
impl<'a, T> Ptr<'a, T, (Exclusive, Aligned, Valid)>
where
T: 'a + ?Sized,
{
/// Constructs a `Ptr` from an exclusive reference.
#[inline]
pub(crate) fn from_mut(ptr: &'a mut T) -> Self {
let ptr = NonNull::from(ptr);
// SAFETY:
// 0. If `ptr`'s referent is not zero sized, then `ptr`, by
// invariant on `&'a mut T`, is derived from some valid Rust
// allocation, `A`.
// 1. If `ptr`'s referent is not zero sized, then `ptr`, by
// invariant on `&'a mut T`, has valid provenance for `A`.
// 2. If `ptr`'s referent is not zero sized, then `ptr`, by
// invariant on `&'a mut T`, addresses a byte range which is
// entirely contained in `A`.
// 3. `ptr`, by invariant on `&'a mut T`, addresses a byte range
// whose length fits in an `isize`.
// 4. `ptr`, by invariant on `&'a mut T`, addresses a byte range
// which does not wrap around the address space.
// 5. If `ptr`'s referent is not zero sized, then `A`, by invariant
// on `&'a mut T`, is guaranteed to live for at least `'a`.
// 6. `ptr`, by invariant on `&'a mut T`, conforms to the aliasing
// invariant of `Exclusive`.
// 7. `ptr`, by invariant on `&'a mut T`, conforms to the alignment
// invariant of `Aligned`.
// 8. `ptr`, by invariant on `&'a mut T`, conforms to the validity
// invariant of `Valid`.
unsafe { Self::new(ptr) }
}
}
/// `Ptr<'a, T>` → `&'a T`
impl<'a, T, I> Ptr<'a, T, I>
where
T: 'a + ?Sized,
I: Invariants<Alignment = Aligned, Validity = Valid>,
I::Aliasing: AtLeast<Shared>,
{
/// Converts `self` to a shared reference.
// This consumes `self`, not `&self`, because `self` is, logically, a
// pointer. For `I::Aliasing = invariant::Shared`, `Self: Copy`, and so
// this doesn't prevent the caller from still using the pointer after
// calling `as_ref`.
#[allow(clippy::wrong_self_convention)]
pub(crate) fn as_ref(self) -> &'a T {
let raw = self.as_non_null();
// SAFETY: This invocation of `NonNull::as_ref` satisfies its
// documented safety preconditions:
//
// 1. The pointer is properly aligned. This is ensured by-contract
// on `Ptr`, because the `I::Alignment` is `Aligned`.
//
// 2. If the pointer's referent is not zero-sized, then the pointer
// must be “dereferenceable” in the sense defined in the module
// documentation; i.e.:
//
// > The memory range of the given size starting at the pointer
// > must all be within the bounds of a single allocated object.
// > [2]
//
// This is ensured by contract on all `Ptr`s.
//
// 3. The pointer must point to an initialized instance of `T`. This
// is ensured by-contract on `Ptr`, because the `I::Validity` is
// `Valid`.
//
// 4. You must enforce Rust’s aliasing rules. This is ensured by
// contract on `Ptr`, because the `I::Aliasing` is
// `AtLeast<Shared>`. Either it is `Shared` or `Exclusive`. If it
// is `Shared`, other references may not mutate the referent
// outside of `UnsafeCell`s.
//
// [1]: https://doc.rust-lang.org/std/ptr/struct.NonNull.html#method.as_ref
// [2]: https://doc.rust-lang.org/std/ptr/index.html#safety
unsafe { raw.as_ref() }
}
}
impl<'a, T, I> Ptr<'a, T, I>
where
T: 'a + ?Sized,
I: Invariants,
I::Aliasing: AtLeast<Shared>,
{
/// Reborrows `self`, producing another `Ptr`.
///
/// Since `self` is borrowed immutably, this prevents any mutable
/// methods from being called on `self` as long as the returned `Ptr`
/// exists.
#[doc(hidden)]
#[inline]
#[allow(clippy::needless_lifetimes)] // Allows us to name the lifetime in the safety comment below.
pub fn reborrow<'b>(&'b mut self) -> Ptr<'b, T, I>
where
'a: 'b,
{
// SAFETY: The following all hold by invariant on `self`, and thus
// hold of `ptr = self.as_non_null()`:
// 0. If `ptr`'s referent is not zero sized, then `ptr` is derived
// from some valid Rust allocation, `A`.
// 1. If `ptr`'s referent is not zero sized, then `ptr` has valid
// provenance for `A`.
// 2. If `ptr`'s referent is not zero sized, then `ptr` addresses a
// byte range which is entirely contained in `A`.
// 3. `ptr` addresses a byte range whose length fits in an `isize`.
// 4. `ptr` addresses a byte range which does not wrap around the
// address space.
// 5. If `ptr`'s referent is not zero sized, then `A` is guaranteed
// to live for at least `'a`.
// 6. SEE BELOW.
// 7. `ptr` conforms to the alignment invariant of
// [`I::Alignment`](invariant::Alignment).
// 8. `ptr` conforms to the validity invariant of
// [`I::Validity`](invariant::Validity).
//
// For aliasing (6 above), since `I::Aliasing: AtLeast<Shared>`,
// there are two cases for `I::Aliasing`:
// - For `invariant::Shared`: `'a` outlives `'b`, and so the
// returned `Ptr` does not permit accessing the referent any
// longer than is possible via `self`. For shared aliasing, it is
// sound for multiple `Ptr`s to exist simultaneously which
// reference the same memory, so creating a new one is not
// problematic.
// - For `invariant::Exclusive`: Since `self` is `&'b mut` and we
// return a `Ptr` with lifetime `'b`, `self` is inaccessible to
// the caller for the lifetime `'b` - in other words, `self` is
// inaccessible to the caller as long as the returned `Ptr`
// exists. Since `self` is an exclusive `Ptr`, no other live
// references or `Ptr`s may exist which refer to the same memory
// while `self` is live. Thus, as long as the returned `Ptr`
// exists, no other references or `Ptr`s which refer to the same
// memory may be live.
unsafe { Ptr::new(self.as_non_null()) }
}
}
/// `Ptr<'a, T>` → `&'a mut T`
impl<'a, T> Ptr<'a, T, (Exclusive, Aligned, Valid)>
where
T: 'a + ?Sized,
{
/// Converts `self` to a mutable reference.
#[allow(clippy::wrong_self_convention)]
pub(crate) fn as_mut(self) -> &'a mut T {
let mut raw = self.as_non_null();
// SAFETY: This invocation of `NonNull::as_mut` satisfies its
// documented safety preconditions:
//
// 1. The pointer is properly aligned. This is ensured by-contract
// on `Ptr`, because the `ALIGNMENT_INVARIANT` is `Aligned`.
//
// 2. If the pointer's referent is not zero-sized, then the pointer
// must be “dereferenceable” in the sense defined in the module
// documentation; i.e.:
//
// > The memory range of the given size starting at the pointer
// > must all be within the bounds of a single allocated object.
// > [2]
//
// This is ensured by contract on all `Ptr`s.
//
// 3. The pointer must point to an initialized instance of `T`. This
// is ensured by-contract on `Ptr`, because the
// `VALIDITY_INVARIANT` is `Valid`.
//
// 4. You must enforce Rust’s aliasing rules. This is ensured by
// contract on `Ptr`, because the `ALIASING_INVARIANT` is
// `Exclusive`.
//
// [1]: https://doc.rust-lang.org/std/ptr/struct.NonNull.html#method.as_mut
// [2]: https://doc.rust-lang.org/std/ptr/index.html#safety
unsafe { raw.as_mut() }
}
}
/// `Ptr<'a, T = Wrapper<U>>` → `Ptr<'a, U>`
impl<'a, T, I> Ptr<'a, T, I>
where
T: 'a + TransparentWrapper<I, UnsafeCellVariance = Covariant> + ?Sized,
I: Invariants,
{
/// Converts `self` to a transparent wrapper type into a `Ptr` to the
/// wrapped inner type.
pub(crate) fn transparent_wrapper_into_inner(
self,
) -> Ptr<
'a,
T::Inner,
(
I::Aliasing,
<T::AlignmentVariance as AlignmentVariance<I::Alignment>>::Applied,
<T::ValidityVariance as ValidityVariance<I::Validity>>::Applied,
),
> {
// SAFETY:
// - By invariant on `TransparentWrapper::cast_into_inner`:
// - This cast preserves address and referent size, and thus the
// returned pointer addresses the same bytes as `p`
// - This cast preserves provenance
// - By invariant on `TransparentWrapper<UnsafeCellVariance =
// Covariant>`, `T` and `T::Inner` have `UnsafeCell`s at the same
// byte ranges. Since `p` and the returned pointer address the
// same byte range, they refer to `UnsafeCell`s at the same byte
// ranges.
let c = unsafe { self.cast_unsized(|p| T::cast_into_inner(p)) };
// SAFETY: By invariant on `TransparentWrapper`, since `self`
// satisfies the alignment invariant `I::Alignment`, `c` (of type
// `T::Inner`) satisfies the given "applied" alignment invariant.
let c = unsafe {
c.assume_alignment::<<T::AlignmentVariance as AlignmentVariance<I::Alignment>>::Applied>()
};
// SAFETY: By invariant on `TransparentWrapper`, since `self`
// satisfies the validity invariant `I::Validity`, `c` (of type
// `T::Inner`) satisfies the given "applied" validity invariant.
let c = unsafe {
c.assume_validity::<<T::ValidityVariance as ValidityVariance<I::Validity>>::Applied>()
};
c
}
}
/// `Ptr<'a, T, (_, _, _)>` → `Ptr<'a, Unalign<T>, (_, Aligned, _)>`
impl<'a, T, I> Ptr<'a, T, I>
where
I: Invariants,
{
/// Converts a `Ptr` an unaligned `T` into a `Ptr` to an aligned
/// `Unalign<T>`.
pub(crate) fn into_unalign(
self,
) -> Ptr<'a, crate::Unalign<T>, (I::Aliasing, Aligned, I::Validity)> {
// SAFETY:
// - This cast preserves provenance.
// - This cast preserves address. `Unalign<T>` promises to have the
// same size as `T`, and so the cast returns a pointer addressing
// the same byte range as `p`.
// - By the same argument, the returned pointer refers to
// `UnsafeCell`s at the same locations as `p`.
let ptr = unsafe {
#[allow(clippy::as_conversions)]
self.cast_unsized(|p: *mut T| p as *mut crate::Unalign<T>)
};
// SAFETY: `Unalign<T>` promises to have the same bit validity as
// `T`.
let ptr = unsafe { ptr.assume_validity::<I::Validity>() };
// SAFETY: `Unalign<T>` promises to have alignment 1, and so it is
// trivially aligned.
let ptr = unsafe { ptr.assume_alignment::<Aligned>() };
ptr
}
}
}
/// State transitions between invariants.
mod _transitions {
use super::*;
use crate::{AlignmentError, TryFromBytes, ValidityError};
impl<'a, T, I> Ptr<'a, T, I>
where
T: 'a + ?Sized,
I: Invariants,
{
/// Returns a `Ptr` with [`Exclusive`] aliasing if `self` already has
/// `Exclusive` aliasing.
///
/// This allows code which is generic over aliasing to down-cast to a
/// concrete aliasing.
///
/// [`Exclusive`]: invariant::Exclusive
#[inline]
pub(crate) fn into_exclusive_or_post_monomorphization_error(
self,
) -> Ptr<'a, T, (Exclusive, I::Alignment, I::Validity)> {
trait AliasingExt: Aliasing {
const IS_EXCLUSIVE: bool;
}
impl<A: Aliasing> AliasingExt for A {
const IS_EXCLUSIVE: bool = {
let is_exclusive =
strs_are_equal(<Self as Aliasing>::NAME, <Exclusive as Aliasing>::NAME);
const_assert!(is_exclusive);
true
};
}
const fn strs_are_equal(s: &str, t: &str) -> bool {
if s.len() != t.len() {
return false;
}
let s = s.as_bytes();
let t = t.as_bytes();
let mut i = 0;
#[allow(clippy::arithmetic_side_effects)]
while i < s.len() {
#[allow(clippy::indexing_slicing)]
if s[i] != t[i] {
return false;
}
i += 1;
}
true
}
assert!(I::Aliasing::IS_EXCLUSIVE);
// SAFETY: We've confirmed that `self` already has the aliasing
// `Exclusive`. If it didn't, either the preceding assert would fail
// or evaluating `I::Aliasing::IS_EXCLUSIVE` would fail. We're
// *pretty* sure that it's guaranteed to fail const eval, but the
// `assert!` provides a backstop in case that doesn't work.
unsafe { self.assume_exclusive() }
}
/// Assumes that `self` satisfies the invariants `H`.
///
/// # Safety
///
/// The caller promises that `self` satisfies the invariants `H`.
unsafe fn assume_invariants<H: Invariants>(self) -> Ptr<'a, T, H> {
// SAFETY: The caller has promised to satisfy all parameterized
// invariants of `Ptr`. `Ptr`'s other invariants are satisfied
// by-contract by the source `Ptr`.
unsafe { Ptr::new(self.as_non_null()) }
}
/// Helps the type system unify two distinct invariant types which are
/// actually the same.
pub(crate) fn unify_invariants<
H: Invariants<Aliasing = I::Aliasing, Alignment = I::Alignment, Validity = I::Validity>,
>(
self,
) -> Ptr<'a, T, H> {
// SAFETY: The associated type bounds on `H` ensure that the
// invariants are unchanged.
unsafe { self.assume_invariants::<H>() }
}
/// Assumes that `self` satisfies the aliasing requirement of `A`.
///
/// # Safety
///
/// The caller promises that `self` satisfies the aliasing requirement
/// of `A`.
#[inline]
pub(crate) unsafe fn assume_aliasing<A: Aliasing>(
self,
) -> Ptr<'a, T, (A, I::Alignment, I::Validity)> {
// SAFETY: The caller promises that `self` satisfies the aliasing
// requirements of `A`.
unsafe { self.assume_invariants() }
}
/// Assumes `self` satisfies the aliasing requirement of [`Exclusive`].
///
/// # Safety
///
/// The caller promises that `self` satisfies the aliasing requirement
/// of `Exclusive`.
///
/// [`Exclusive`]: invariant::Exclusive
#[inline]
pub(crate) unsafe fn assume_exclusive(
self,
) -> Ptr<'a, T, (Exclusive, I::Alignment, I::Validity)> {
// SAFETY: The caller promises that `self` satisfies the aliasing
// requirements of `Exclusive`.
unsafe { self.assume_aliasing::<Exclusive>() }
}
/// Assumes that `self`'s referent is validly-aligned for `T` if
/// required by `A`.
///
/// # Safety
///
/// The caller promises that `self`'s referent conforms to the alignment
/// invariant of `T` if required by `A`.
#[inline]
pub(crate) unsafe fn assume_alignment<A: Alignment>(
self,
) -> Ptr<'a, T, (I::Aliasing, A, I::Validity)> {
// SAFETY: The caller promises that `self`'s referent is
// well-aligned for `T` if required by `A` .
unsafe { self.assume_invariants() }
}
/// Checks the `self`'s alignment at runtime, returning an aligned `Ptr`
/// on success.
pub(crate) fn bikeshed_try_into_aligned(
self,
) -> Result<Ptr<'a, T, (I::Aliasing, Aligned, I::Validity)>, AlignmentError<Self, T>>
where
T: Sized,
{
if let Err(err) = crate::util::validate_aligned_to::<_, T>(self.as_non_null()) {
return Err(err.with_src(self));
}
// SAFETY: We just checked the alignment.
Ok(unsafe { self.assume_alignment::<Aligned>() })
}
/// Recalls that `self`'s referent is validly-aligned for `T`.
#[inline]
// TODO(#859): Reconsider the name of this method before making it
// public.
pub(crate) fn bikeshed_recall_aligned(
self,
) -> Ptr<'a, T, (I::Aliasing, Aligned, I::Validity)>
where
T: crate::Unaligned,
{
// SAFETY: The bound `T: Unaligned` ensures that `T` has no
// non-trivial alignment requirement.
unsafe { self.assume_alignment::<Aligned>() }
}
/// Assumes that `self`'s referent conforms to the validity requirement
/// of `V`.
///
/// # Safety
///
/// The caller promises that `self`'s referent conforms to the validity
/// requirement of `V`.
#[doc(hidden)]
#[must_use]
#[inline]
pub unsafe fn assume_validity<V: Validity>(
self,
) -> Ptr<'a, T, (I::Aliasing, I::Alignment, V)> {
// SAFETY: The caller promises that `self`'s referent conforms to
// the validity requirement of `V`.
unsafe { self.assume_invariants() }
}
/// A shorthand for `self.assume_validity<invariant::Initialized>()`.
///
/// # Safety
///
/// The caller promises to uphold the safety preconditions of
/// `self.assume_validity<invariant::Initialized>()`.
#[doc(hidden)]
#[must_use]
#[inline]
pub unsafe fn assume_initialized(
self,
) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Initialized)> {
// SAFETY: The caller has promised to uphold the safety
// preconditions.
unsafe { self.assume_validity::<Initialized>() }
}
/// A shorthand for `self.assume_validity<Valid>()`.
///
/// # Safety
///
/// The caller promises to uphold the safety preconditions of
/// `self.assume_validity<Valid>()`.
#[doc(hidden)]
#[must_use]
#[inline]
pub unsafe fn assume_valid(self) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)> {
// SAFETY: The caller has promised to uphold the safety
// preconditions.
unsafe { self.assume_validity::<Valid>() }
}
/// Recalls that `self`'s referent is bit-valid for `T`.
#[doc(hidden)]
#[must_use]
#[inline]
// TODO(#859): Reconsider the name of this method before making it
// public.
pub fn bikeshed_recall_valid(self) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)>
where
T: crate::FromBytes,
I: Invariants<Validity = Initialized>,
{
// SAFETY: The bound `T: FromBytes` ensures that any initialized
// sequence of bytes is bit-valid for `T`. `I: Invariants<Validity =
// invariant::Initialized>` ensures that all of the referent bytes
// are initialized.
unsafe { self.assume_valid() }
}
/// Checks that `self`'s referent is validly initialized for `T`,
/// returning a `Ptr` with `Valid` on success.
///
/// # Panics
///
/// This method will panic if
/// [`T::is_bit_valid`][TryFromBytes::is_bit_valid] panics.
///
/// # Safety
///
/// On error, unsafe code may rely on this method's returned
/// `ValidityError` containing `self`.
#[inline]
pub(crate) fn try_into_valid(
mut self,
) -> Result<Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)>, ValidityError<Self, T>>
where
T: TryFromBytes,
I::Aliasing: AtLeast<Shared>,
I: Invariants<Validity = Initialized>,
{
// This call may panic. If that happens, it doesn't cause any soundness
// issues, as we have not generated any invalid state which we need to
// fix before returning.
if T::is_bit_valid(self.reborrow().forget_aligned()) {
// SAFETY: If `T::is_bit_valid`, code may assume that `self`
// contains a bit-valid instance of `Self`.
Ok(unsafe { self.assume_valid() })
} else {
Err(ValidityError::new(self))
}
}
/// Forgets that `self`'s referent exclusively references `T`,
/// downgrading to a shared reference.
#[doc(hidden)]
#[must_use]
#[inline]
pub fn forget_exclusive(self) -> Ptr<'a, T, (Shared, I::Alignment, I::Validity)>
where
I::Aliasing: AtLeast<Shared>,
{
// SAFETY: `I::Aliasing` is at least as restrictive as `Shared`.
unsafe { self.assume_invariants() }
}
/// Forgets that `self`'s referent is validly-aligned for `T`.
#[doc(hidden)]
#[must_use]
#[inline]
pub fn forget_aligned(self) -> Ptr<'a, T, (I::Aliasing, Any, I::Validity)> {
// SAFETY: `Any` is less restrictive than `Aligned`.
unsafe { self.assume_invariants() }
}
}
}
/// Casts of the referent type.
mod _casts {
use super::*;
use crate::{
layout::{DstLayout, MetadataCastError},
pointer::aliasing_safety::*,
AlignmentError, CastError, PointerMetadata, SizeError,
};
impl<'a, T, I> Ptr<'a, T, I>
where
T: 'a + ?Sized,
I: Invariants,
{
/// Casts to a different (unsized) target type.
///
/// # Safety
///
/// The caller promises that `u = cast(p)` is a pointer cast with the
/// following properties:
/// - `u` addresses a subset of the bytes addressed by `p`
/// - `u` has the same provenance as `p`
/// - If `I::Aliasing` is [`Any`] or [`Shared`], `UnsafeCell`s in `*u`
/// must exist at ranges identical to those at which `UnsafeCell`s
/// exist in `*p`
#[doc(hidden)]
#[inline]
pub unsafe fn cast_unsized<U: 'a + ?Sized, F: FnOnce(*mut T) -> *mut U>(
self,
cast: F,
) -> Ptr<'a, U, (I::Aliasing, Any, Any)> {
let ptr = cast(self.as_non_null().as_ptr());
// SAFETY: Caller promises that `cast` returns a pointer whose
// address is in the range of `self.as_non_null()`'s referent. By
// invariant, none of these addresses are null.
let ptr = unsafe { NonNull::new_unchecked(ptr) };
// SAFETY:
//
// Lemma 1: `ptr` has the same provenance as `self`. The caller
// promises that `cast` preserves provenance, and we call it with
// `self.as_non_null()`.
//
// 0. By invariant, if `self`'s referent is not zero sized, then
// `self` is derived from some valid Rust allocation, `A`. By
// Lemma 1, `ptr` has the same provenance as `self`. Thus, `ptr`
// is derived from `A`.
// 1. By invariant, if `self`'s referent is not zero sized, then
// `self` has valid provenance for `A`. By Lemma 1, so does
// `ptr`.
// 2. By invariant on `self` and caller precondition, if `ptr`'s
// referent is not zero sized, then `ptr` addresses a byte range
// which is entirely contained in `A`.
// 3. By invariant on `self` and caller precondition, `ptr`
// addresses a byte range whose length fits in an `isize`.
// 4. By invariant on `self` and caller precondition, `ptr`
// addresses a byte range which does not wrap around the address
// space.
// 5. By invariant on `self`, if `self`'s referent is not zero
// sized, then `A` is guaranteed to live for at least `'a`.
// 6. `ptr` conforms to the aliasing invariant of `I::Aliasing`:
// - `Exclusive`: `self` is the only `Ptr` or reference which is
// permitted to read or modify the referent for the lifetime
// `'a`. Since we consume `self` by value, the returned pointer
// remains the only `Ptr` or reference which is permitted to
// read or modify the referent for the lifetime `'a`.
// - `Shared`: Since `self` has aliasing `Shared`, we know that
// no other code may mutate the referent during the lifetime
// `'a`, except via `UnsafeCell`s. The caller promises that
// `UnsafeCell`s cover the same byte ranges in `*self` and
// `*ptr`. For each byte in the referent, there are two cases:
// - If the byte is not covered by an `UnsafeCell` in `*ptr`,
// then it is not covered in `*self`. By invariant on `self`,
// it will not be mutated during `'a`, as required by the
// constructed pointer. Similarly, the returned pointer will
// not permit any mutations to these locations, as required
// by the invariant on `self`.
// - If the byte is covered by an `UnsafeCell` in `*ptr`, then
// the returned pointer's invariants do not assume that the
// byte will not be mutated during `'a`. While the returned
// pointer will permit mutation of this byte during `'a`, by
// invariant on `self`, no other code assumes that this will
// not happen.
// 7. `ptr`, trivially, conforms to the alignment invariant of
// `Any`.
// 8. `ptr`, trivially, conforms to the validity invariant of `Any`.
unsafe { Ptr::new(ptr) }
}
}
impl<'a, T, I> Ptr<'a, T, I>
where
T: 'a + KnownLayout + ?Sized,
I: Invariants<Validity = Initialized>,
{
/// Casts this pointer-to-initialized into a pointer-to-bytes.
#[allow(clippy::wrong_self_convention)]
pub(crate) fn as_bytes<R>(self) -> Ptr<'a, [u8], (I::Aliasing, Aligned, Valid)>
where
[u8]: AliasingSafe<T, I::Aliasing, R>,
R: AliasingSafeReason,
{
let bytes = match T::size_of_val_raw(self.as_non_null()) {
Some(bytes) => bytes,
// SAFETY: `KnownLayout::size_of_val_raw` promises to always
// return `Some` so long as the resulting size fits in a
// `usize`. By invariant on `Ptr`, `self` refers to a range of
// bytes whose size fits in an `isize`, which implies that it
// also fits in a `usize`.
None => unsafe { core::hint::unreachable_unchecked() },
};
// SAFETY:
// - `slice_from_raw_parts_mut` and `.cast` both preserve the
// pointer's address, and `bytes` is the length of `p`, so the
// returned pointer addresses the same bytes as `p`
// - `slice_from_raw_parts_mut` and `.cast` both preserve provenance
// - Because `[u8]: AliasingSafe<T, I::Aliasing, _>`, either:
// - `I::Aliasing` is `Exclusive`
// - `T` and `[u8]` are both `Immutable`, in which case they
// trivially contain `UnsafeCell`s at identical locations
let ptr: Ptr<'a, [u8], _> = unsafe {
self.cast_unsized(|p: *mut T| {
#[allow(clippy::as_conversions)]
core::ptr::slice_from_raw_parts_mut(p.cast::<u8>(), bytes)
})
};
let ptr = ptr.bikeshed_recall_aligned();
// SAFETY: `ptr`'s referent begins as `Initialized`, denoting that
// all bytes of the referent are initialized bytes. The referent
// type is then casted to `[u8]`, whose only validity invariant is
// that its bytes are initialized. This validity invariant is
// satisfied by the `Initialized` invariant on the starting `ptr`.
unsafe { ptr.assume_validity::<Valid>() }
}
}
impl<'a, T, I, const N: usize> Ptr<'a, [T; N], I>
where
T: 'a,
I: Invariants,
{
/// Casts this pointer-to-array into a slice.
#[allow(clippy::wrong_self_convention)]
pub(crate) fn as_slice(self) -> Ptr<'a, [T], I> {
let start = self.as_non_null().cast::<T>().as_ptr();
let slice = core::ptr::slice_from_raw_parts_mut(start, N);
// SAFETY: `slice` is not null, because it is derived from `start`
// which is non-null.
let slice = unsafe { NonNull::new_unchecked(slice) };
// SAFETY: Lemma: In the following safety arguments, note that
// `slice` is derived from `self` in two steps: first, by casting
// `self: [T; N]` to `start: T`, then by constructing a pointer to a
// slice starting at `start` of length `N`. As a result, `slice`
// references exactly the same allocation as `self`, if any.
//
// 0. By the above lemma, if `slice`'s referent is not zero sized,
// then `slice` is derived from the same allocation as `self`,
// which, by invariant on `Ptr`, is valid.
// 1. By the above lemma, if `slice`'s referent is not zero sized,
// then , `slice` has valid provenance for `A`, since it is
// derived from the pointer `self`, which, by invariant on `Ptr`,
// has valid provenance for `A`.
// 2. By the above lemma, if `slice`'s referent is not zero sized,
// then `slice` addresses a byte range which is entirely
// contained in `A`, because it references exactly the same byte
// range as `self`, which, by invariant on `Ptr`, is entirely
// contained in `A`.
// 3. By the above lemma, `slice` addresses a byte range whose
// length fits in an `isize`, since it addresses exactly the same
// byte range as `self`, which, by invariant on `Ptr`, has a
// length that fits in an `isize`.
// 4. By the above lemma, `slice` addresses a byte range which does
// not wrap around the address space, since it addresses exactly
// the same byte range as `self`, which, by invariant on `Ptr`,
// does not wrap around the address space.
// 5. By the above lemma, if `slice`'s referent is not zero sized,
// then `A` is guaranteed to live for at least `'a`, because it
// is derived from the same allocation as `self`, which, by
// invariant on `Ptr`, lives for at least `'a`.
// 6. By the above lemma, `slice` conforms to the aliasing invariant
// of `I::Aliasing`, because the operations that produced `slice`
// from `self` do not impact aliasing.
// 7. By the above lemma, `slice` conforms to the alignment
// invariant of `I::Alignment`, because the operations that
// produced `slice` from `self` do not impact alignment.
// 8. By the above lemma, `slice` conforms to the validity invariant
// of `I::Validity`, because the operations that produced `slice`
// from `self` do not impact validity.
unsafe { Ptr::new(slice) }
}
}
/// For caller convenience, these methods are generic over alignment
/// invariant. In practice, the referent is always well-aligned, because the
/// alignment of `[u8]` is 1.
impl<'a, I> Ptr<'a, [u8], I>
where
I: Invariants<Validity = Valid>,
{
/// Attempts to cast `self` to a `U` using the given cast type.
///
/// If `U` is a slice DST and pointer metadata (`meta`) is provided,
/// then the cast will only succeed if it would produce an object with
/// the given metadata.
///
/// Returns `None` if the resulting `U` would be invalidly-aligned, if
/// no `U` can fit in `self`, or if the provided pointer metadata
/// describes an invalid instance of `U`. On success, returns a pointer
/// to the largest-possible `U` which fits in `self`.
///
/// # Safety
///
/// The caller may assume that this implementation is correct, and may
/// rely on that assumption for the soundness of their code. In
/// particular, the caller may assume that, if `try_cast_into` returns
/// `Some((ptr, remainder))`, then `ptr` and `remainder` refer to
/// non-overlapping byte ranges within `self`, and that `ptr` and
/// `remainder` entirely cover `self`. Finally:
/// - If this is a prefix cast, `ptr` has the same address as `self`.
/// - If this is a suffix cast, `remainder` has the same address as
/// `self`.
pub(crate) fn try_cast_into<U, R>(
self,
cast_type: CastType,
meta: Option<U::PointerMetadata>,
) -> Result<
(Ptr<'a, U, (I::Aliasing, Aligned, Initialized)>, Ptr<'a, [u8], I>),
CastError<Self, U>,
>
where
R: AliasingSafeReason,
U: 'a + ?Sized + KnownLayout + AliasingSafe<[u8], I::Aliasing, R>,
{
let layout = match meta {
None => U::LAYOUT,
// This can return `None` if the metadata describes an object
// which can't fit in an `isize`.
Some(meta) => {
let size = match meta.size_for_metadata(U::LAYOUT) {
Some(size) => size,
None => return Err(CastError::Size(SizeError::new(self))),
};
DstLayout { align: U::LAYOUT.align, size_info: crate::SizeInfo::Sized { size } }
}
};
// PANICS: By invariant, the byte range addressed by `self.ptr` does
// not wrap around the address space. This implies that the sum of
// the address (represented as a `usize`) and length do not overflow
// `usize`, as required by `validate_cast_and_convert_metadata`.
// Thus, this call to `validate_cast_and_convert_metadata` will only
// panic if `U` is a DST whose trailing slice element is zero-sized.
let maybe_metadata = layout.validate_cast_and_convert_metadata(
AsAddress::addr(self.as_non_null().as_ptr()),
self.len(),
cast_type,
);
let (elems, split_at) = match maybe_metadata {
Ok((elems, split_at)) => (elems, split_at),
Err(MetadataCastError::Alignment) => {
// SAFETY: Since `validate_cast_and_convert_metadata`
// returned an alignment error, `U` must have an alignment
// requirement greater than one.
let err = unsafe { AlignmentError::<_, U>::new_unchecked(self) };
return Err(CastError::Alignment(err));
}
Err(MetadataCastError::Size) => return Err(CastError::Size(SizeError::new(self))),
};
// SAFETY: `validate_cast_and_convert_metadata` promises to return
// `split_at <= self.len()`.
let (l_slice, r_slice) = unsafe { self.split_at(split_at) };
let (target, remainder) = match cast_type {
CastType::Prefix => (l_slice, r_slice),
CastType::Suffix => (r_slice, l_slice),
};
let base = target.as_non_null().cast::<u8>();
let elems = <U as KnownLayout>::PointerMetadata::from_elem_count(elems);
// For a slice DST type, if `meta` is `Some(elems)`, then we
// synthesize `layout` to describe a sized type whose size is equal
// to the size of the instance that we are asked to cast. For sized
// types, `validate_cast_and_convert_metadata` returns `elems == 0`.
// Thus, in this case, we need to use the `elems` passed by the
// caller, not the one returned by
// `validate_cast_and_convert_metadata`.
let elems = meta.unwrap_or(elems);
let ptr = U::raw_from_ptr_len(base, elems);
// SAFETY:
// 0. By invariant, if `target`'s referent is not zero sized, then
// `target` is derived from some valid Rust allocation, `A`. By
// contract on `cast`, `ptr` is derived from `self`, and thus
// from the same valid Rust allocation, `A`.
// 1. By invariant, if `target`'s referent is not zero sized, then
// `target` has provenance valid for some Rust allocation, `A`.
// Because `ptr` is derived from `target` via
// provenance-preserving operations, `ptr` will also have
// provenance valid for `A`.
// - `validate_cast_and_convert_metadata` promises that the object
// described by `elems` and `split_at` lives at a byte range
// which is a subset of the input byte range. Thus:
// 2. Since, by invariant, if `target`'s referent is not zero
// sized, then `target` addresses a byte range which is
// entirely contained in `A`, so does `ptr`.
// 3. Since, by invariant, `target` addresses a byte range whose
// length fits in an `isize`, so does `ptr`.
// 4. Since, by invariant, `target` addresses a byte range which
// does not wrap around the address space, so does `ptr`.
// 5. Since, by invariant, if `target`'s referent is not zero
// sized, then `target` refers to an allocation which is
// guaranteed to live for at least `'a`, so does `ptr`.
// 6. Since `U: AliasingSafe<[u8], I::Aliasing, _>`, either:
// - `I::Aliasing` is `Exclusive`, in which case both `src`
// and `ptr` conform to `Exclusive`
// - `I::Aliasing` is `Shared` or `Any` and both `U` and
// `[u8]` are `Immutable`. In this case, neither pointer
// permits mutation, and so `Shared` aliasing is satisfied.
// 7. `ptr` conforms to the alignment invariant of `Aligned` because
// it is derived from `validate_cast_and_convert_metadata`, which
// promises that the object described by `target` is validly
// aligned for `U`.
// 8. By trait bound, `self` - and thus `target` - is a bit-valid
// `[u8]`. All bit-valid `[u8]`s have all of their bytes
// initialized, so `ptr` conforms to the validity invariant of
// `Initialized`.
Ok((unsafe { Ptr::new(ptr) }, remainder))
}
/// Attempts to cast `self` into a `U`, failing if all of the bytes of
/// `self` cannot be treated as a `U`.
///
/// In particular, this method fails if `self` is not validly-aligned
/// for `U` or if `self`'s size is not a valid size for `U`.
///
/// # Safety
///
/// On success, the caller may assume that the returned pointer
/// references the same byte range as `self`.
#[allow(unused)]
#[inline(always)]
pub(crate) fn try_cast_into_no_leftover<U, R>(
self,
meta: Option<U::PointerMetadata>,
) -> Result<Ptr<'a, U, (I::Aliasing, Aligned, Initialized)>, CastError<Self, U>>
where
U: 'a + ?Sized + KnownLayout + AliasingSafe<[u8], I::Aliasing, R>,
R: AliasingSafeReason,
{
// TODO(#67): Remove this allow. See NonNulSlicelExt for more
// details.
#[allow(unstable_name_collisions)]
match self.try_cast_into(CastType::Prefix, meta) {
Ok((slf, remainder)) => {
if remainder.len() == 0 {
Ok(slf)
} else {
// Undo the cast so we can return the original bytes.
let slf = slf.as_bytes();
// Restore the initial alignment invariant of `self`.
//
// SAFETY: The referent type of `slf` is now equal to
// that of `self`, but the alignment invariants
// nominally differ. Since `slf` and `self` refer to the
// same memory and no actions have been taken that would
// violate the original invariants on `self`, it is
// sound to apply the alignment invariant of `self` onto
// `slf`.
let slf = unsafe { slf.assume_alignment::<I::Alignment>() };
let slf = slf.unify_invariants();
Err(CastError::Size(SizeError::<_, U>::new(slf)))
}
}
Err(err) => Err(err),
}
}
}
impl<'a, T, I> Ptr<'a, core::cell::UnsafeCell<T>, I>
where
T: 'a + ?Sized,
I: Invariants<Aliasing = Exclusive>,
{
/// Converts this `Ptr` into a pointer to the underlying data.
///
/// This call borrows the `UnsafeCell` mutably (at compile-time) which
/// guarantees that we possess the only reference.
///
/// This is like [`UnsafeCell::get_mut`], but for `Ptr`.
///
/// [`UnsafeCell::get_mut`]: core::cell::UnsafeCell::get_mut
#[must_use]
#[inline(always)]
pub fn get_mut(self) -> Ptr<'a, T, I> {
// SAFETY:
// - The closure uses an `as` cast, which preserves address range
// and provenance.
// - We require `I: Invariants<Aliasing = Exclusive>`, so we are not
// required to uphold `UnsafeCell` equality.
#[allow(clippy::as_conversions)]
let ptr = unsafe { self.cast_unsized(|p| p as *mut T) };
// SAFETY: `UnsafeCell<T>` has the same alignment as `T` [1],
// and so if `self` is guaranteed to be aligned, then so is the
// returned `Ptr`.
//
// [1] Per https://doc.rust-lang.org/1.81.0/core/cell/struct.UnsafeCell.html#memory-layout:
//
// `UnsafeCell<T>` has the same in-memory representation as
// its inner type `T`. A consequence of this guarantee is that
// it is possible to convert between `T` and `UnsafeCell<T>`.
let ptr = unsafe { ptr.assume_alignment::<I::Alignment>() };
// SAFETY: `UnsafeCell<T>` has the same bit validity as `T` [1], and
// so if `self` has a particular validity invariant, then the same
// holds of the returned `Ptr`. Technically the term
// "representation" doesn't guarantee this, but the subsequent
// sentence in the documentation makes it clear that this is the
// intention.
//
// [1] Per https://doc.rust-lang.org/1.81.0/core/cell/struct.UnsafeCell.html#memory-layout:
//
// `UnsafeCell<T>` has the same in-memory representation as its
// inner type `T`. A consequence of this guarantee is that it is
// possible to convert between `T` and `UnsafeCell<T>`.
let ptr = unsafe { ptr.assume_validity::<I::Validity>() };
ptr.unify_invariants()
}
}
}
/// Projections through the referent.
mod _project {
use core::ops::Range;
#[allow(unused_imports)]
use crate::util::polyfills::NumExt as _;
use super::*;
impl<'a, T, I> Ptr<'a, T, I>
where
T: 'a + ?Sized,
I: Invariants<Validity = Initialized>,
{
/// Projects a field from `self`.
///
/// # Safety
///
/// `project` has the same safety preconditions as `cast_unsized`.
#[doc(hidden)]
#[inline]
pub unsafe fn project<U: 'a + ?Sized>(
self,
projector: impl FnOnce(*mut T) -> *mut U,
) -> Ptr<'a, U, (I::Aliasing, Any, Initialized)> {
// TODO(#1122): If `cast_unsized` were able to reason that, when
// casting from an `Initialized` pointer, the result is another
// `Initialized` pointer, we could remove this method entirely.
// SAFETY: This method has the same safety preconditions as
// `cast_unsized`.
let ptr = unsafe { self.cast_unsized(projector) };
// SAFETY: If all of the bytes of `self` are initialized (as
// promised by `I: Invariants<Validity = Initialized>`), then any
// subset of those bytes are also all initialized.
unsafe { ptr.assume_validity::<Initialized>() }
}
}
impl<'a, T, I> Ptr<'a, T, I>
where
T: 'a + KnownLayout<PointerMetadata = usize> + ?Sized,
I: Invariants,
{
/// The number of trailing slice elements in the object referenced by
/// `self`.
///
/// # Safety
///
/// Unsafe code my rely on `trailing_slice_len` satisfying the above
/// contract.
pub(super) fn trailing_slice_len(&self) -> usize {
T::pointer_to_metadata(self.as_non_null().as_ptr())
}
}
impl<'a, T, I> Ptr<'a, [T], I>
where
T: 'a,
I: Invariants,
{
/// The number of slice elements in the object referenced by `self`.
///
/// # Safety
///
/// Unsafe code my rely on `len` satisfying the above contract.
pub(crate) fn len(&self) -> usize {
self.trailing_slice_len()
}
/// Creates a pointer which addresses the given `range` of self.
///
/// # Safety
///
/// `range` is a valid range (`start <= end`) and `end <= self.len()`.
pub(crate) unsafe fn slice_unchecked(self, range: Range<usize>) -> Self {
let base = self.as_non_null().cast::<T>().as_ptr();
// SAFETY: The caller promises that `start <= end <= self.len()`. By
// invariant, if `self`'s referent is not zero-sized, then `self`
// refers to a byte range which is contained within a single
// allocation, which is no more than `isize::MAX` bytes long, and
// which does not wrap around the address space. Thus, this pointer
// arithmetic remains in-bounds of the same allocation, and does not
// wrap around the address space. The offset (in bytes) does not
// overflow `isize`.
//
// If `self`'s referent is zero-sized, then these conditions are
// trivially satisfied.
let base = unsafe { base.add(range.start) };
// SAFETY: The caller promises that `start <= end`, and so this will
// not underflow.
#[allow(unstable_name_collisions, clippy::incompatible_msrv)]
let len = unsafe { range.end.unchecked_sub(range.start) };
let ptr = core::ptr::slice_from_raw_parts_mut(base, len);
// SAFETY: By invariant, `self`'s address is non-null and its range
// does not wrap around the address space. Since, by the preceding
// lemma, `ptr` addresses a range within that addressed by `self`,
// `ptr` is non-null.
let ptr = unsafe { NonNull::new_unchecked(ptr) };
// SAFETY:
//
// Lemma 0: `ptr` addresses a subset of the bytes addressed by
// `self`, and has the same provenance.
// Proof: The caller guarantees that `start <= end <= self.len()`.
// Thus, `base` is in-bounds of `self`, and `base + (end -
// start)` is also in-bounds of self. Finally, `ptr` is
// constructed using provenance-preserving operations.
//
// 0. Per Lemma 0 and by invariant on `self`, if `ptr`'s referent is
// not zero sized, then `ptr` is derived from some valid Rust
// allocation, `A`.
// 1. Per Lemma 0 and by invariant on `self`, if `ptr`'s referent is
// not zero sized, then `ptr` has valid provenance for `A`.
// 2. Per Lemma 0 and by invariant on `self`, if `ptr`'s referent is
// not zero sized, then `ptr` addresses a byte range which is
// entirely contained in `A`.
// 3. Per Lemma 0 and by invariant on `self`, `ptr` addresses a byte
// range whose length fits in an `isize`.
// 4. Per Lemma 0 and by invariant on `self`, `ptr` addresses a byte
// range which does not wrap around the address space.
// 5. Per Lemma 0 and by invariant on `self`, if `ptr`'s referent is
// not zero sized, then `A` is guaranteed to live for at least
// `'a`.
// 6. Per Lemma 0 and by invariant on `self`, `ptr` conforms to the
// aliasing invariant of [`I::Aliasing`](invariant::Aliasing).
// 7. Per Lemma 0 and by invariant on `self`, `ptr` conforms to the
// alignment invariant of [`I::Alignment`](invariant::Alignment).
// 8. Per Lemma 0 and by invariant on `self`, `ptr` conforms to the
// validity invariant of [`I::Validity`](invariant::Validity).
unsafe { Ptr::new(ptr) }
}
/// Splits the slice in two.
///
/// # Safety
///
/// The caller promises that `l_len <= self.len()`.
pub(crate) unsafe fn split_at(self, l_len: usize) -> (Self, Self) {
// SAFETY: `Any` imposes no invariants, and so this is always sound.
let slf = unsafe { self.assume_aliasing::<Any>() };
// SAFETY: The caller promises that `l_len <= self.len()`.
// Trivially, `0 <= l_len`.
let left = unsafe { slf.slice_unchecked(0..l_len) };
// SAFETY: The caller promises that `l_len <= self.len() =
// slf.len()`. Trivially, `slf.len() <= slf.len()`.
let right = unsafe { slf.slice_unchecked(l_len..slf.len()) };
// LEMMA: `left` and `right` are non-overlapping. Proof: `left` is
// constructed from `slf` with `l_len` as its (exclusive) upper
// bound, while `right` is constructed from `slf` with `l_len` as
// its (inclusive) lower bound. Thus, no index is a member of both
// ranges.
// SAFETY: By the preceding lemma, `left` and `right` do not alias.
// We do not construct any other `Ptr`s or references which alias
// `left` or `right`. Thus, the only `Ptr`s or references which
// alias `left` or `right` are outside of this method. By invariant,
// `self` obeys the aliasing invariant `I::Aliasing` with respect to
// those other `Ptr`s or references, and so `left` and `right` do as
// well.
let (left, right) = unsafe {
(left.assume_aliasing::<I::Aliasing>(), right.assume_aliasing::<I::Aliasing>())
};
(left.unify_invariants(), right.unify_invariants())
}
/// Iteratively projects the elements `Ptr<T>` from `Ptr<[T]>`.
pub(crate) fn iter(&self) -> impl Iterator<Item = Ptr<'a, T, I>> {
// TODO(#429): Once `NonNull::cast` documents that it preserves
// provenance, cite those docs.
let base = self.as_non_null().cast::<T>().as_ptr();
(0..self.len()).map(move |i| {
// TODO(https://github.com/rust-lang/rust/issues/74265): Use
// `NonNull::get_unchecked_mut`.
// SAFETY: If the following conditions are not satisfied
// `pointer::cast` may induce Undefined Behavior [1]:
//
// > - The computed offset, `count * size_of::<T>()` bytes, must
// > not overflow `isize``.
// > - If the computed offset is non-zero, then `self` must be
// > derived from a pointer to some allocated object, and the
// > entire memory range between `self` and the result must be
// > in bounds of that allocated object. In particular, this
// > range must not “wrap around” the edge of the address
// > space.
//
// [1] https://doc.rust-lang.org/std/primitive.pointer.html#method.add
//
// We satisfy both of these conditions here:
// - By invariant on `Ptr`, `self` addresses a byte range whose
// length fits in an `isize`. Since `elem` is contained in
// `self`, the computed offset of `elem` must fit within
// `isize.`
// - If the computed offset is non-zero, then this means that
// the referent is not zero-sized. In this case, `base` points
// to an allocated object (by invariant on `self`). Thus:
// - By contract, `self.len()` accurately reflects the number
// of elements in the slice. `i` is in bounds of `c.len()`
// by construction, and so the result of this addition
// cannot overflow past the end of the allocation referred
// to by `c`.
// - By invariant on `Ptr`, `self` addresses a byte range
// which does not wrap around the address space. Since
// `elem` is contained in `self`, the computed offset of
// `elem` must wrap around the address space.
//
// TODO(#429): Once `pointer::add` documents that it preserves
// provenance, cite those docs.
let elem = unsafe { base.add(i) };
// SAFETY:
// - `elem` must not be null. `base` is constructed from a
// `NonNull` pointer, and the addition that produces `elem`
// must not overflow or wrap around, so `elem >= base > 0`.
//
// TODO(#429): Once `NonNull::new_unchecked` documents that it
// preserves provenance, cite those docs.
let elem = unsafe { NonNull::new_unchecked(elem) };
// SAFETY: The safety invariants of `Ptr::new` (see definition)
// are satisfied:
// 0. If `elem`'s referent is not zero sized, then `elem` is
// derived from a valid Rust allocation, because `self` is
// derived from a valid Rust allocation, by invariant on
// `Ptr`.
// 1. If `elem`'s referent is not zero sized, then `elem` has
// valid provenance for `self`, because it derived from
// `self` using a series of provenance-preserving operations.
// 2. If `elem`'s referent is not zero sized, then `elem` is
// entirely contained in the allocation of `self` (see
// above).
// 3. `elem` addresses a byte range whose length fits in an
// `isize` (see above).
// 4. `elem` addresses a byte range which does not wrap around
// the address space (see above).
// 5. If `elem`'s referent is not zero sized, then the
// allocation of `elem` is guaranteed to live for at least
// `'a`, because `elem` is entirely contained in `self`,
// which lives for at least `'a` by invariant on `Ptr`.
// 6. `elem` conforms to the aliasing invariant of `I::Aliasing`
// because projection does not impact the aliasing invariant.
// 7. `elem`, conditionally, conforms to the validity invariant
// of `I::Alignment`. If `elem` is projected from data
// well-aligned for `[T]`, `elem` will be valid for `T`.
// 8. `elem`, conditionally, conforms to the validity invariant
// of `I::Validity`. If `elem` is projected from data valid
// for `[T]`, `elem` will be valid for `T`.
unsafe { Ptr::new(elem) }
})
}
}
}
#[cfg(test)]
mod tests {
use core::mem::{self, MaybeUninit};
use static_assertions::{assert_impl_all, assert_not_impl_any};
use super::*;
use crate::{pointer::BecauseImmutable, util::testutil::AU64, FromBytes, Immutable};
#[test]
fn test_split_at() {
const N: usize = 16;
let mut arr = [1; N];
let mut ptr = Ptr::from_mut(&mut arr).as_slice();
for i in 0..=N {
assert_eq!(ptr.len(), N);
// SAFETY: `i` is in bounds by construction.
let (l, r) = unsafe { ptr.reborrow().split_at(i) };
let l_sum: usize = l.iter().map(Ptr::read_unaligned::<BecauseImmutable>).sum();
let r_sum: usize = r.iter().map(Ptr::read_unaligned::<BecauseImmutable>).sum();
assert_eq!(l_sum, i);
assert_eq!(r_sum, N - i);
assert_eq!(l_sum + r_sum, N);
}
}
mod test_ptr_try_cast_into_soundness {
use super::*;
// This test is designed so that if `Ptr::try_cast_into_xxx` are
// buggy, it will manifest as unsoundness that Miri can detect.
// - If `size_of::<T>() == 0`, `N == 4`
// - Else, `N == 4 * size_of::<T>()`
//
// Each test will be run for each metadata in `metas`.
fn test<T, I, const N: usize>(metas: I)
where
T: ?Sized + KnownLayout + Immutable + FromBytes,
I: IntoIterator<Item = Option<T::PointerMetadata>> + Clone,
{
let mut bytes = [MaybeUninit::<u8>::uninit(); N];
let initialized = [MaybeUninit::new(0u8); N];
for start in 0..=bytes.len() {
for end in start..=bytes.len() {
// Set all bytes to uninitialized other than those in
// the range we're going to pass to `try_cast_from`.
// This allows Miri to detect out-of-bounds reads
// because they read uninitialized memory. Without this,
// some out-of-bounds reads would still be in-bounds of
// `bytes`, and so might spuriously be accepted.
bytes = [MaybeUninit::<u8>::uninit(); N];
let bytes = &mut bytes[start..end];
// Initialize only the byte range we're going to pass to
// `try_cast_from`.
bytes.copy_from_slice(&initialized[start..end]);
let bytes = {
let bytes: *const [MaybeUninit<u8>] = bytes;
#[allow(clippy::as_conversions)]
let bytes = bytes as *const [u8];
// SAFETY: We just initialized these bytes to valid
// `u8`s.
unsafe { &*bytes }
};
// SAFETY: The bytes in `slf` must be initialized.
unsafe fn validate_and_get_len<T: ?Sized + KnownLayout + FromBytes>(
slf: Ptr<'_, T, (Shared, Aligned, Initialized)>,
) -> usize {
let t = slf.bikeshed_recall_valid().as_ref();
let bytes = {
let len = mem::size_of_val(t);
let t: *const T = t;
// SAFETY:
// - We know `t`'s bytes are all initialized
// because we just read it from `slf`, which
// points to an initialized range of bytes. If
// there's a bug and this doesn't hold, then
// that's exactly what we're hoping Miri will
// catch!
// - Since `T: FromBytes`, `T` doesn't contain
// any `UnsafeCell`s, so it's okay for `t: T`
// and a `&[u8]` to the same memory to be
// alive concurrently.
unsafe { core::slice::from_raw_parts(t.cast::<u8>(), len) }
};
// This assertion ensures that `t`'s bytes are read
// and compared to another value, which in turn
// ensures that Miri gets a chance to notice if any
// of `t`'s bytes are uninitialized, which they
// shouldn't be (see the comment above).
assert_eq!(bytes, vec![0u8; bytes.len()]);
mem::size_of_val(t)
}
for meta in metas.clone().into_iter() {
for cast_type in [CastType::Prefix, CastType::Suffix] {
if let Ok((slf, remaining)) = Ptr::from_ref(bytes)
.try_cast_into::<T, BecauseImmutable>(cast_type, meta)
{
// SAFETY: All bytes in `bytes` have been
// initialized.
let len = unsafe { validate_and_get_len(slf) };
assert_eq!(remaining.len(), bytes.len() - len);
#[allow(unstable_name_collisions)]
let bytes_addr = bytes.as_ptr().addr();
#[allow(unstable_name_collisions)]
let remaining_addr = remaining.as_non_null().as_ptr().addr();
match cast_type {
CastType::Prefix => {
assert_eq!(remaining_addr, bytes_addr + len)
}
CastType::Suffix => assert_eq!(remaining_addr, bytes_addr),
}
if let Some(want) = meta {
let got = KnownLayout::pointer_to_metadata(
slf.as_non_null().as_ptr(),
);
assert_eq!(got, want);
}
}
}
if let Ok(slf) = Ptr::from_ref(bytes)
.try_cast_into_no_leftover::<T, BecauseImmutable>(meta)
{
// SAFETY: All bytes in `bytes` have been
// initialized.
let len = unsafe { validate_and_get_len(slf) };
assert_eq!(len, bytes.len());
if let Some(want) = meta {
let got =
KnownLayout::pointer_to_metadata(slf.as_non_null().as_ptr());
assert_eq!(got, want);
}
}
}
}
}
}
#[derive(FromBytes, KnownLayout, Immutable)]
#[repr(C)]
struct SliceDst<T> {
a: u8,
trailing: [T],
}
// Each test case becomes its own `#[test]` function. We do this because
// this test in particular takes far, far longer to execute under Miri
// than all of our other tests combined. Previously, we had these
// execute sequentially in a single test function. We run Miri tests in
// parallel in CI, but this test being sequential meant that most of
// that parallelism was wasted, as all other tests would finish in a
// fraction of the total execution time, leaving this test to execute on
// a single thread for the remainder of the test. By putting each test
// case in its own function, we permit better use of available
// parallelism.
macro_rules! test {
($test_name:ident: $ty:ty) => {
#[test]
#[allow(non_snake_case)]
fn $test_name() {
const S: usize = core::mem::size_of::<$ty>();
const N: usize = if S == 0 { 4 } else { S * 4 };
test::<$ty, _, N>([None]);
// If `$ty` is a ZST, then we can't pass `None` as the
// pointer metadata, or else computing the correct trailing
// slice length will panic.
if S == 0 {
test::<[$ty], _, N>([Some(0), Some(1), Some(2), Some(3)]);
test::<SliceDst<$ty>, _, N>([Some(0), Some(1), Some(2), Some(3)]);
} else {
test::<[$ty], _, N>([None, Some(0), Some(1), Some(2), Some(3)]);
test::<SliceDst<$ty>, _, N>([None, Some(0), Some(1), Some(2), Some(3)]);
}
}
};
($ty:ident) => {
test!($ty: $ty);
};
($($ty:ident),*) => { $(test!($ty);)* }
}
test!(empty_tuple: ());
test!(u8, u16, u32, u64, u128, usize, AU64);
test!(i8, i16, i32, i64, i128, isize);
test!(f32, f64);
}
#[test]
fn test_invariants() {
// Test that the correct invariant relationships hold.
use super::invariant::*;
assert_not_impl_any!(Any: AtLeast<Shared>);
assert_impl_all!(Shared: AtLeast<Shared>);
assert_impl_all!(Exclusive: AtLeast<Shared>);
assert_not_impl_any!(Any: AtLeast<AsInitialized>);
assert_impl_all!(AsInitialized: AtLeast<AsInitialized>);
assert_impl_all!(Initialized: AtLeast<AsInitialized>);
assert_impl_all!(Valid: AtLeast<AsInitialized>);
}
#[test]
fn test_try_cast_into_explicit_count() {
macro_rules! test {
($ty:ty, $bytes:expr, $elems:expr, $expect:expr) => {{
let bytes = [0u8; $bytes];
let ptr = Ptr::from_ref(&bytes[..]);
let res =
ptr.try_cast_into::<$ty, BecauseImmutable>(CastType::Prefix, Some($elems));
if let Some(expect) = $expect {
let (ptr, _) = res.unwrap();
assert_eq!(
KnownLayout::pointer_to_metadata(ptr.as_non_null().as_ptr()),
expect
);
} else {
let _ = res.unwrap_err();
}
}};
}
#[derive(KnownLayout, Immutable)]
#[repr(C)]
struct ZstDst {
u: [u8; 8],
slc: [()],
}
test!(ZstDst, 8, 0, Some(0));
test!(ZstDst, 7, 0, None);
test!(ZstDst, 8, usize::MAX, Some(usize::MAX));
test!(ZstDst, 7, usize::MAX, None);
#[derive(KnownLayout, Immutable)]
#[repr(C)]
struct Dst {
u: [u8; 8],
slc: [u8],
}
test!(Dst, 8, 0, Some(0));
test!(Dst, 7, 0, None);
test!(Dst, 9, 1, Some(1));
test!(Dst, 8, 1, None);
// If we didn't properly check for overflow, this would cause the
// metadata to overflow to 0, and thus the cast would spuriously
// succeed.
test!(Dst, 8, usize::MAX - 8 + 1, None);
}
}