zerocopy/util/
macros.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
// Copyright 2023 The Fuchsia Authors
//
// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
// This file may not be copied, modified, or distributed except according to
// those terms.

/// Documents multiple unsafe blocks with a single safety comment.
///
/// Invoked as:
///
/// ```rust,ignore
/// safety_comment! {
///     // Non-doc comments come first.
///     /// SAFETY:
///     /// Safety comment starts on its own line.
///     macro_1!(args);
///     macro_2! { args };
///     /// SAFETY:
///     /// Subsequent safety comments are allowed but not required.
///     macro_3! { args };
/// }
/// ```
///
/// The macro invocations are emitted, each decorated with the following
/// attribute: `#[allow(clippy::undocumented_unsafe_blocks)]`.
macro_rules! safety_comment {
    (#[doc = r" SAFETY:"] $($(#[$attr:meta])* $macro:ident!$args:tt;)*) => {
        #[allow(clippy::undocumented_unsafe_blocks, unused_attributes)]
        const _: () = { $($(#[$attr])* $macro!$args;)* };
    }
}

/// Unsafely implements trait(s) for a type.
///
/// # Safety
///
/// The trait impl must be sound.
///
/// When implementing `TryFromBytes`:
/// - If no `is_bit_valid` impl is provided, then it must be valid for
///   `is_bit_valid` to unconditionally return `true`. In other words, it must
///   be the case that any initialized sequence of bytes constitutes a valid
///   instance of `$ty`.
/// - If an `is_bit_valid` impl is provided, then:
///   - Regardless of whether the provided closure takes a `Ptr<$repr>` or
///     `&$repr` argument, if `$ty` and `$repr` are different types, then it
///     must be the case that, given `t: *mut $ty` and `let r = t as *mut
///     $repr`:
///     - `r` refers to an object of equal or lesser size than the object
///       referred to by `t`.
///     - `r` refers to an object with `UnsafeCell`s at the same byte ranges as
///       the object referred to by `t`.
///   - If the provided closure takes a `&$repr` argument, then given a `Ptr<'a,
///     $ty>` which satisfies the preconditions of
///     `TryFromBytes::<$ty>::is_bit_valid`, it must be guaranteed that the
///     memory referenced by that `Ptr` always contains a valid `$repr`.
///   - The impl of `is_bit_valid` must only return `true` for its argument
///     `Ptr<$repr>` if the original `Ptr<$ty>` refers to a valid `$ty`.
macro_rules! unsafe_impl {
    // Implement `$trait` for `$ty` with no bounds.
    ($(#[$attr:meta])* $ty:ty: $trait:ident $(; |$candidate:ident: MaybeAligned<$repr:ty>| $is_bit_valid:expr)?) => {
        $(#[$attr])*
        unsafe impl $trait for $ty {
            unsafe_impl!(@method $trait $(; |$candidate: MaybeAligned<$repr>| $is_bit_valid)?);
        }
    };
    // Implement all `$traits` for `$ty` with no bounds.
    ($ty:ty: $($traits:ident),*) => {
        $( unsafe_impl!($ty: $traits); )*
    };
    // This arm is identical to the following one, except it contains a
    // preceding `const`. If we attempt to handle these with a single arm, there
    // is an inherent ambiguity between `const` (the keyword) and `const` (the
    // ident match for `$tyvar:ident`).
    //
    // To explain how this works, consider the following invocation:
    //
    //   unsafe_impl!(const N: usize, T: ?Sized + Copy => Clone for Foo<T>);
    //
    // In this invocation, here are the assignments to meta-variables:
    //
    //   |---------------|------------|
    //   | Meta-variable | Assignment |
    //   |---------------|------------|
    //   | $constname    |  N         |
    //   | $constty      |  usize     |
    //   | $tyvar        |  T         |
    //   | $optbound     |  Sized     |
    //   | $bound        |  Copy      |
    //   | $trait        |  Clone     |
    //   | $ty           |  Foo<T>    |
    //   |---------------|------------|
    //
    // The following arm has the same behavior with the exception of the lack of
    // support for a leading `const` parameter.
    (
        $(#[$attr:meta])*
        const $constname:ident : $constty:ident $(,)?
        $($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?),*
        => $trait:ident for $ty:ty $(; |$candidate:ident $(: MaybeAligned<$ref_repr:ty>)? $(: Maybe<$ptr_repr:ty>)?| $is_bit_valid:expr)?
    ) => {
        unsafe_impl!(
            @inner
            $(#[$attr])*
            @const $constname: $constty,
            $($tyvar $(: $(? $optbound +)* + $($bound +)*)?,)*
            => $trait for $ty $(; |$candidate $(: MaybeAligned<$ref_repr>)? $(: Maybe<$ptr_repr>)?| $is_bit_valid)?
        );
    };
    (
        $(#[$attr:meta])*
        $($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?),*
        => $trait:ident for $ty:ty $(; |$candidate:ident $(: MaybeAligned<$ref_repr:ty>)? $(: Maybe<$ptr_repr:ty>)?| $is_bit_valid:expr)?
    ) => {
        unsafe_impl!(
            @inner
            $(#[$attr])*
            $($tyvar $(: $(? $optbound +)* + $($bound +)*)?,)*
            => $trait for $ty $(; |$candidate $(: MaybeAligned<$ref_repr>)? $(: Maybe<$ptr_repr>)?| $is_bit_valid)?
        );
    };
    (
        @inner
        $(#[$attr:meta])*
        $(@const $constname:ident : $constty:ident,)*
        $($tyvar:ident $(: $(? $optbound:ident +)* + $($bound:ident +)* )?,)*
        => $trait:ident for $ty:ty $(; |$candidate:ident $(: MaybeAligned<$ref_repr:ty>)? $(: Maybe<$ptr_repr:ty>)?| $is_bit_valid:expr)?
    ) => {
        $(#[$attr])*
        #[allow(non_local_definitions)]
        unsafe impl<$($tyvar $(: $(? $optbound +)* $($bound +)*)?),* $(, const $constname: $constty,)*> $trait for $ty {
            unsafe_impl!(@method $trait $(; |$candidate: $(MaybeAligned<$ref_repr>)? $(Maybe<$ptr_repr>)?| $is_bit_valid)?);
        }
    };

    (@method TryFromBytes ; |$candidate:ident: MaybeAligned<$repr:ty>| $is_bit_valid:expr) => {
        #[allow(clippy::missing_inline_in_public_items)]
        #[cfg_attr(coverage_nightly, coverage(off))]
        fn only_derive_is_allowed_to_implement_this_trait() {}

        #[inline]
        fn is_bit_valid<AA: invariant::Aliasing + invariant::AtLeast<invariant::Shared>>(candidate: Maybe<'_, Self, AA>) -> bool {
            // SAFETY:
            // - The cast preserves address. The caller has promised that the
            //   cast results in an object of equal or lesser size, and so the
            //   cast returns a pointer which references a subset of the bytes
            //   of `p`.
            // - The cast preserves provenance.
            // - The caller has promised that the destination type has
            //   `UnsafeCell`s at the same byte ranges as the source type.
            #[allow(clippy::as_conversions)]
            let candidate = unsafe { candidate.cast_unsized::<$repr, _>(|p| p as *mut _) };

            // SAFETY: The caller has promised that the referenced memory region
            // will contain a valid `$repr`.
            let $candidate = unsafe { candidate.assume_validity::<crate::pointer::invariant::Valid>() };
            $is_bit_valid
        }
    };
    (@method TryFromBytes ; |$candidate:ident: Maybe<$repr:ty>| $is_bit_valid:expr) => {
        #[allow(clippy::missing_inline_in_public_items)]
        #[cfg_attr(coverage_nightly, coverage(off))]
        fn only_derive_is_allowed_to_implement_this_trait() {}

        #[inline]
        fn is_bit_valid<AA: invariant::Aliasing + invariant::AtLeast<invariant::Shared>>(candidate: Maybe<'_, Self, AA>) -> bool {
            // SAFETY:
            // - The cast preserves address. The caller has promised that the
            //   cast results in an object of equal or lesser size, and so the
            //   cast returns a pointer which references a subset of the bytes
            //   of `p`.
            // - The cast preserves provenance.
            // - The caller has promised that the destination type has
            //   `UnsafeCell`s at the same byte ranges as the source type.
            #[allow(clippy::as_conversions)]
            let $candidate = unsafe { candidate.cast_unsized::<$repr, _>(|p| p as *mut _) };

            // Restore the invariant that the referent bytes are initialized.
            // SAFETY: The above cast does not uninitialize any referent bytes;
            // they remain initialized.
            let $candidate = unsafe { $candidate.assume_validity::<crate::pointer::invariant::Initialized>() };

            $is_bit_valid
        }
    };
    (@method TryFromBytes) => {
        #[allow(clippy::missing_inline_in_public_items)]
        #[cfg_attr(coverage_nightly, coverage(off))]
        fn only_derive_is_allowed_to_implement_this_trait() {}
        #[inline(always)] fn is_bit_valid<A: invariant::Aliasing + invariant::AtLeast<invariant::Shared>>(_: Maybe<'_, Self, A>) -> bool { true }
    };
    (@method $trait:ident) => {
        #[allow(clippy::missing_inline_in_public_items)]
        #[cfg_attr(coverage_nightly, coverage(off))]
        fn only_derive_is_allowed_to_implement_this_trait() {}
    };
    (@method $trait:ident; |$_candidate:ident $(: &$_ref_repr:ty)? $(: NonNull<$_ptr_repr:ty>)?| $_is_bit_valid:expr) => {
        compile_error!("Can't provide `is_bit_valid` impl for trait other than `TryFromBytes`");
    };
}

/// Implements `$trait` for a type which implements `TransparentWrapper`.
///
/// Calling this macro is safe; the internals of the macro emit appropriate
/// trait bounds which ensure that the given impl is sound.
macro_rules! impl_for_transparent_wrapper {
    (
        $(#[$attr:meta])*
        $($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?)?
        => $trait:ident for $ty:ty $(; |$candidate:ident $(: MaybeAligned<$ref_repr:ty>)? $(: Maybe<$ptr_repr:ty>)?| $is_bit_valid:expr)?
    ) => {
        $(#[$attr])*
        #[allow(non_local_definitions)]

        // This block implements `$trait` for `$ty` under the following
        // conditions:
        // - `$ty: TransparentWrapper`
        // - `$ty::Inner: $trait`
        // - For some `Xxx`, `$ty::XxxVariance = Covariant` (`Xxx` is determined
        //   by the `@define_is_transparent_wrapper` macro arms). This bound
        //   ensures that some layout property is the same between `$ty` and
        //   `$ty::Inner`. Which layout property this is depends on the trait
        //   being implemented (for example, `FromBytes` is not concerned with
        //   alignment, but is concerned with bit validity).
        //
        // In other words, `$ty` is guaranteed to soundly implement `$trait`
        // because some property of its layout is the same as `$ty::Inner`,
        // which implements `$trait`. Most of the complexity in this macro is to
        // ensure that the above-mentioned conditions are actually met, and that
        // the proper variance (ie, the proper layout property) is chosen.

        // SAFETY:
        // - `is_transparent_wrapper<I, W>` requires:
        //   - `W: TransparentWrapper<I>`
        //   - `W::Inner: $trait`
        // - `f` is generic over `I: Invariants`, and in its body, calls
        //   `is_transparent_wrapper::<I, $ty>()`. Thus, this code will only
        //   compile if, for all `I: Invariants`:
        //   - `$ty: TransparentWrapper<I>`
        //   - `$ty::Inner: $trait`
        //
        // These two facts - that `$ty: TransparentWrapper<I>` and that
        // `$ty::Inner: $trait` - are the preconditions to the full safety
        // proofs, which are completed below in the
        // `@define_is_transparent_wrapper` macro arms. The safety proof is
        // slightly different for each trait.
        unsafe impl<$($tyvar $(: $(? $optbound +)* $($bound +)*)?)?> $trait for $ty {
            #[allow(dead_code, clippy::missing_inline_in_public_items)]
            #[cfg_attr(coverage_nightly, coverage(off))]
            fn only_derive_is_allowed_to_implement_this_trait() {
                use crate::{pointer::invariant::Invariants, util::*};

                impl_for_transparent_wrapper!(@define_is_transparent_wrapper $trait);

                #[cfg_attr(coverage_nightly, coverage(off))]
                fn f<I: Invariants, $($tyvar $(: $(? $optbound +)* $($bound +)*)?)?>() {
                    is_transparent_wrapper::<I, $ty>();
                }
            }

            impl_for_transparent_wrapper!(
                @is_bit_valid
                $(<$tyvar $(: $(? $optbound +)* $($bound +)*)?>)?
                $trait for $ty
            );
        }
    };
    (@define_is_transparent_wrapper Immutable) => {
        // SAFETY: `W: TransparentWrapper<UnsafeCellVariance = Covariant>`
        // requires that `W` has `UnsafeCell`s at the same byte offsets as
        // `W::Inner`. `W::Inner: Immutable` implies that `W::Inner` does not
        // contain any `UnsafeCell`s, and so `W` does not contain any
        // `UnsafeCell`s. Since `W = $ty`, `$ty` can soundly implement
        // `Immutable`.
        impl_for_transparent_wrapper!(@define_is_transparent_wrapper Immutable, UnsafeCellVariance)
    };
    (@define_is_transparent_wrapper FromZeros) => {
        // SAFETY: `W: TransparentWrapper<ValidityVariance = Covariant>`
        // requires that `W` has the same bit validity as `W::Inner`. `W::Inner:
        // FromZeros` implies that the all-zeros bit pattern is a bit-valid
        // instance of `W::Inner`, and so the all-zeros bit pattern is a
        // bit-valid instance of `W`. Since `W = $ty`, `$ty` can soundly
        // implement `FromZeros`.
        impl_for_transparent_wrapper!(@define_is_transparent_wrapper FromZeros, ValidityVariance)
    };
    (@define_is_transparent_wrapper FromBytes) => {
        // SAFETY: `W: TransparentWrapper<ValidityVariance = Covariant>`
        // requires that `W` has the same bit validity as `W::Inner`. `W::Inner:
        // FromBytes` implies that any initialized bit pattern is a bit-valid
        // instance of `W::Inner`, and so any initialized bit pattern is a
        // bit-valid instance of `W`. Since `W = $ty`, `$ty` can soundly
        // implement `FromBytes`.
        impl_for_transparent_wrapper!(@define_is_transparent_wrapper FromBytes, ValidityVariance)
    };
    (@define_is_transparent_wrapper IntoBytes) => {
        // SAFETY: `W: TransparentWrapper<ValidityVariance = Covariant>`
        // requires that `W` has the same bit validity as `W::Inner`. `W::Inner:
        // IntoBytes` implies that no bit-valid instance of `W::Inner` contains
        // uninitialized bytes, and so no bit-valid instance of `W` contains
        // uninitialized bytes. Since `W = $ty`, `$ty` can soundly implement
        // `IntoBytes`.
        impl_for_transparent_wrapper!(@define_is_transparent_wrapper IntoBytes, ValidityVariance)
    };
    (@define_is_transparent_wrapper Unaligned) => {
        // SAFETY: `W: TransparentWrapper<AlignmentVariance = Covariant>`
        // requires that `W` has the same alignment as `W::Inner`. `W::Inner:
        // Unaligned` implies `W::Inner`'s alignment is 1, and so `W`'s
        // alignment is 1. Since `W = $ty`, `W` can soundly implement
        // `Unaligned`.
        impl_for_transparent_wrapper!(@define_is_transparent_wrapper Unaligned, AlignmentVariance)
    };
    (@define_is_transparent_wrapper TryFromBytes) => {
        // SAFETY: `W: TransparentWrapper<ValidityVariance = Covariant>`
        // requires that `W` has the same bit validity as `W::Inner`. `W::Inner:
        // TryFromBytes` implies that `<W::Inner as
        // TryFromBytes>::is_bit_valid(c)` only returns `true` if `c` references
        // a bit-valid instance of `W::Inner`. Thus, `<W::Inner as
        // TryFromBytes>::is_bit_valid(c)` only returns `true` if `c` references
        // a bit-valid instance of `W`. Below, we implement `<W as
        // TryFromBytes>::is_bit_valid` by deferring to `<W::Inner as
        // TryFromBytes>::is_bit_valid`. Since `W = $ty`, it is sound for `$ty`
        // to implement `TryFromBytes` with this implementation of
        // `is_bit_valid`.
        impl_for_transparent_wrapper!(@define_is_transparent_wrapper TryFromBytes, ValidityVariance)
    };
    (@define_is_transparent_wrapper $trait:ident, $variance:ident) => {
        #[cfg_attr(coverage_nightly, coverage(off))]
        fn is_transparent_wrapper<I: Invariants, W: TransparentWrapper<I, $variance = Covariant> + ?Sized>()
        where
            W::Inner: $trait,
        {}
    };
    (
        @is_bit_valid
        $(<$tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?>)?
        TryFromBytes for $ty:ty
    ) => {
        // SAFETY: See safety comment in `(@define_is_transparent_wrapper
        // TryFromBytes)` macro arm for an explanation of why this is a sound
        // implementation of `is_bit_valid`.
        #[inline]
        fn is_bit_valid<A: crate::pointer::invariant::Aliasing + crate::pointer::invariant::AtLeast<invariant::Shared>>(candidate: Maybe<'_, Self, A>) -> bool {
            TryFromBytes::is_bit_valid(candidate.transparent_wrapper_into_inner())
        }
    };
    (
        @is_bit_valid
        $(<$tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?>)?
        $trait:ident for $ty:ty
    ) => {
        // Trait other than `TryFromBytes`; no `is_bit_valid` impl.
    };
}

/// Implements a trait for a type, bounding on each memeber of the power set of
/// a set of type variables. This is useful for implementing traits for tuples
/// or `fn` types.
///
/// The last argument is the name of a macro which will be called in every
/// `impl` block, and is expected to expand to the name of the type for which to
/// implement the trait.
///
/// For example, the invocation:
/// ```ignore
/// unsafe_impl_for_power_set!(A, B => Foo for type!(...))
/// ```
/// ...expands to:
/// ```ignore
/// unsafe impl       Foo for type!()     { ... }
/// unsafe impl<B>    Foo for type!(B)    { ... }
/// unsafe impl<A, B> Foo for type!(A, B) { ... }
/// ```
macro_rules! unsafe_impl_for_power_set {
    (
        $first:ident $(, $rest:ident)* $(-> $ret:ident)? => $trait:ident for $macro:ident!(...)
        $(; |$candidate:ident $(: MaybeAligned<$ref_repr:ty>)? $(: Maybe<$ptr_repr:ty>)?| $is_bit_valid:expr)?
    ) => {
        unsafe_impl_for_power_set!(
            $($rest),* $(-> $ret)? => $trait for $macro!(...)
            $(; |$candidate $(: MaybeAligned<$ref_repr>)? $(: Maybe<$ptr_repr>)?| $is_bit_valid)?
        );
        unsafe_impl_for_power_set!(
            @impl $first $(, $rest)* $(-> $ret)? => $trait for $macro!(...)
            $(; |$candidate $(: MaybeAligned<$ref_repr>)? $(: Maybe<$ptr_repr>)?| $is_bit_valid)?
        );
    };
    (
        $(-> $ret:ident)? => $trait:ident for $macro:ident!(...)
        $(; |$candidate:ident $(: MaybeAligned<$ref_repr:ty>)? $(: Maybe<$ptr_repr:ty>)?| $is_bit_valid:expr)?
    ) => {
        unsafe_impl_for_power_set!(
            @impl $(-> $ret)? => $trait for $macro!(...)
            $(; |$candidate $(: MaybeAligned<$ref_repr>)? $(: Maybe<$ptr_repr>)?| $is_bit_valid)?
        );
    };
    (
        @impl $($vars:ident),* $(-> $ret:ident)? => $trait:ident for $macro:ident!(...)
        $(; |$candidate:ident $(: MaybeAligned<$ref_repr:ty>)? $(: Maybe<$ptr_repr:ty>)?| $is_bit_valid:expr)?
    ) => {
        unsafe_impl!(
            $($vars,)* $($ret)? => $trait for $macro!($($vars),* $(-> $ret)?)
            $(; |$candidate $(: MaybeAligned<$ref_repr>)? $(: Maybe<$ptr_repr>)?| $is_bit_valid)?
        );
    };
}

/// Expands to an `Option<extern "C" fn>` type with the given argument types and
/// return type. Designed for use with `unsafe_impl_for_power_set`.
macro_rules! opt_extern_c_fn {
    ($($args:ident),* -> $ret:ident) => { Option<extern "C" fn($($args),*) -> $ret> };
}

/// Expands to a `Option<fn>` type with the given argument types and return
/// type. Designed for use with `unsafe_impl_for_power_set`.
macro_rules! opt_fn {
    ($($args:ident),* -> $ret:ident) => { Option<fn($($args),*) -> $ret> };
}

/// Implements trait(s) for a type or verifies the given implementation by
/// referencing an existing (derived) implementation.
///
/// This macro exists so that we can provide zerocopy-derive as an optional
/// dependency and still get the benefit of using its derives to validate that
/// our trait impls are sound.
///
/// When compiling without `--cfg 'feature = "derive"` and without `--cfg test`,
/// `impl_or_verify!` emits the provided trait impl. When compiling with either
/// of those cfgs, it is expected that the type in question is deriving the
/// traits instead. In this case, `impl_or_verify!` emits code which validates
/// that the given trait impl is at least as restrictive as the the impl emitted
/// by the custom derive. This has the effect of confirming that the impl which
/// is emitted when the `derive` feature is disabled is actually sound (on the
/// assumption that the impl emitted by the custom derive is sound).
///
/// The caller is still required to provide a safety comment (e.g. using the
/// `safety_comment!` macro) . The reason for this restriction is that, while
/// `impl_or_verify!` can guarantee that the provided impl is sound when it is
/// compiled with the appropriate cfgs, there is no way to guarantee that it is
/// ever compiled with those cfgs. In particular, it would be possible to
/// accidentally place an `impl_or_verify!` call in a context that is only ever
/// compiled when the `derive` feature is disabled. If that were to happen,
/// there would be nothing to prevent an unsound trait impl from being emitted.
/// Requiring a safety comment reduces the likelihood of emitting an unsound
/// impl in this case, and also provides useful documentation for readers of the
/// code.
///
/// Finally, if a `TryFromBytes::is_bit_valid` impl is provided, it must adhere
/// to the safety preconditions of [`unsafe_impl!`].
///
/// ## Example
///
/// ```rust,ignore
/// // Note that these derives are gated by `feature = "derive"`
/// #[cfg_attr(any(feature = "derive", test), derive(FromZeros, FromBytes, IntoBytes, Unaligned))]
/// #[repr(transparent)]
/// struct Wrapper<T>(T);
///
/// safety_comment! {
///     /// SAFETY:
///     /// `Wrapper<T>` is `repr(transparent)`, so it is sound to implement any
///     /// zerocopy trait if `T` implements that trait.
///     impl_or_verify!(T: FromZeros => FromZeros for Wrapper<T>);
///     impl_or_verify!(T: FromBytes => FromBytes for Wrapper<T>);
///     impl_or_verify!(T: IntoBytes => IntoBytes for Wrapper<T>);
///     impl_or_verify!(T: Unaligned => Unaligned for Wrapper<T>);
/// }
/// ```
macro_rules! impl_or_verify {
    // The following two match arms follow the same pattern as their
    // counterparts in `unsafe_impl!`; see the documentation on those arms for
    // more details.
    (
        const $constname:ident : $constty:ident $(,)?
        $($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?),*
        => $trait:ident for $ty:ty
    ) => {
        impl_or_verify!(@impl { unsafe_impl!(
            const $constname: $constty, $($tyvar $(: $(? $optbound +)* $($bound +)*)?),* => $trait for $ty
        ); });
        impl_or_verify!(@verify $trait, {
            impl<const $constname: $constty, $($tyvar $(: $(? $optbound +)* $($bound +)*)?),*> Subtrait for $ty {}
        });
    };
    (
        $($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?),*
        => $trait:ident for $ty:ty $(; |$candidate:ident $(: MaybeAligned<$ref_repr:ty>)? $(: Maybe<$ptr_repr:ty>)?| $is_bit_valid:expr)?
    ) => {
        impl_or_verify!(@impl { unsafe_impl!(
            $($tyvar $(: $(? $optbound +)* $($bound +)*)?),* => $trait for $ty
            $(; |$candidate $(: MaybeAligned<$ref_repr>)? $(: Maybe<$ptr_repr>)?| $is_bit_valid)?
        ); });
        impl_or_verify!(@verify $trait, {
            impl<$($tyvar $(: $(? $optbound +)* $($bound +)*)?),*> Subtrait for $ty {}
        });
    };
    (@impl $impl_block:tt) => {
        #[cfg(not(any(feature = "derive", test)))]
        const _: () = { $impl_block };
    };
    (@verify $trait:ident, $impl_block:tt) => {
        #[cfg(any(feature = "derive", test))]
        const _: () = {
            trait Subtrait: $trait {}
            $impl_block
        };
    };
}

/// Implements `KnownLayout` for a sized type.
macro_rules! impl_known_layout {
    ($(const $constvar:ident : $constty:ty, $tyvar:ident $(: ?$optbound:ident)? => $ty:ty),* $(,)?) => {
        $(impl_known_layout!(@inner const $constvar: $constty, $tyvar $(: ?$optbound)? => $ty);)*
    };
    ($($tyvar:ident $(: ?$optbound:ident)? => $ty:ty),* $(,)?) => {
        $(impl_known_layout!(@inner , $tyvar $(: ?$optbound)? => $ty);)*
    };
    ($($ty:ty),*) => { $(impl_known_layout!(@inner , => $ty);)* };
    (@inner $(const $constvar:ident : $constty:ty)? , $($tyvar:ident $(: ?$optbound:ident)?)? => $ty:ty) => {
        const _: () = {
            use core::ptr::NonNull;

            #[allow(non_local_definitions)]
            // SAFETY: Delegates safety to `DstLayout::for_type`.
            unsafe impl<$($tyvar $(: ?$optbound)?)? $(, const $constvar : $constty)?> KnownLayout for $ty {
                #[allow(clippy::missing_inline_in_public_items)]
                #[cfg_attr(coverage_nightly, coverage(off))]
                fn only_derive_is_allowed_to_implement_this_trait() where Self: Sized {}

                type PointerMetadata = ();

                const LAYOUT: crate::DstLayout = crate::DstLayout::for_type::<$ty>();

                // SAFETY: `.cast` preserves address and provenance.
                //
                // TODO(#429): Add documentation to `.cast` that promises that
                // it preserves provenance.
                #[inline(always)]
                fn raw_from_ptr_len(bytes: NonNull<u8>, _meta: ()) -> NonNull<Self> {
                    bytes.cast::<Self>()
                }

                #[inline(always)]
                fn pointer_to_metadata(_ptr: *mut Self) -> () {
                }
            }
        };
    };
}

/// Implements `KnownLayout` for a type in terms of the implementation of
/// another type with the same representation.
///
/// # Safety
///
/// - `$ty` and `$repr` must have the same:
///   - Fixed prefix size
///   - Alignment
///   - (For DSTs) trailing slice element size
/// - It must be valid to perform an `as` cast from `*mut $repr` to `*mut $ty`,
///   and this operation must preserve referent size (ie, `size_of_val_raw`).
macro_rules! unsafe_impl_known_layout {
    ($($tyvar:ident: ?Sized + KnownLayout =>)? #[repr($repr:ty)] $ty:ty) => {
        const _: () = {
            use core::ptr::NonNull;

            #[allow(non_local_definitions)]
            unsafe impl<$($tyvar: ?Sized + KnownLayout)?> KnownLayout for $ty {
                #[allow(clippy::missing_inline_in_public_items)]
                #[cfg_attr(coverage_nightly, coverage(off))]
                fn only_derive_is_allowed_to_implement_this_trait() {}

                type PointerMetadata = <$repr as KnownLayout>::PointerMetadata;

                const LAYOUT: DstLayout = <$repr as KnownLayout>::LAYOUT;

                // SAFETY: All operations preserve address and provenance.
                // Caller has promised that the `as` cast preserves size.
                //
                // TODO(#429): Add documentation to `NonNull::new_unchecked`
                // that it preserves provenance.
                #[inline(always)]
                fn raw_from_ptr_len(bytes: NonNull<u8>, meta: <$repr as KnownLayout>::PointerMetadata) -> NonNull<Self> {
                    #[allow(clippy::as_conversions)]
                    let ptr = <$repr>::raw_from_ptr_len(bytes, meta).as_ptr() as *mut Self;
                    // SAFETY: `ptr` was converted from `bytes`, which is non-null.
                    unsafe { NonNull::new_unchecked(ptr) }
                }

                #[inline(always)]
                fn pointer_to_metadata(ptr: *mut Self) -> Self::PointerMetadata {
                    #[allow(clippy::as_conversions)]
                    let ptr = ptr as *mut $repr;
                    <$repr>::pointer_to_metadata(ptr)
                }
            }
        };
    };
}

/// Uses `align_of` to confirm that a type or set of types have alignment 1.
///
/// Note that `align_of<T>` requires `T: Sized`, so this macro doesn't work for
/// unsized types.
macro_rules! assert_unaligned {
    ($($tys:ty),*) => {
        $(
            // We only compile this assertion under `cfg(test)` to avoid taking
            // an extra non-dev dependency (and making this crate more expensive
            // to compile for our dependents).
            #[cfg(test)]
            static_assertions::const_assert_eq!(core::mem::align_of::<$tys>(), 1);
        )*
    };
}

/// Emits a function definition as either `const fn` or `fn` depending on
/// whether the current toolchain version supports `const fn` with generic trait
/// bounds.
macro_rules! maybe_const_trait_bounded_fn {
    // This case handles both `self` methods (where `self` is by value) and
    // non-method functions. Each `$args` may optionally be followed by `:
    // $arg_tys:ty`, which can be omitted for `self`.
    ($(#[$attr:meta])* $vis:vis const fn $name:ident($($args:ident $(: $arg_tys:ty)?),* $(,)?) $(-> $ret_ty:ty)? $body:block) => {
        #[cfg(zerocopy_generic_bounds_in_const_fn_1_61_0)]
        $(#[$attr])* $vis const fn $name($($args $(: $arg_tys)?),*) $(-> $ret_ty)? $body

        #[cfg(not(zerocopy_generic_bounds_in_const_fn_1_61_0))]
        $(#[$attr])* $vis fn $name($($args $(: $arg_tys)?),*) $(-> $ret_ty)? $body
    };
}

/// Either panic (if the current Rust toolchain supports panicking in `const
/// fn`) or evaluate a constant that will cause an array indexing error whose
/// error message will include the format string.
///
/// The type that this expression evaluates to must be `Copy`, or else the
/// non-panicking desugaring will fail to compile.
macro_rules! const_panic {
    (@non_panic $($_arg:tt)+) => {{
        // This will type check to whatever type is expected based on the call
        // site.
        let panic: [_; 0] = [];
        // This will always fail (since we're indexing into an array of size 0.
        #[allow(unconditional_panic)]
        panic[0]
    }};
    ($($arg:tt)+) => {{
        #[cfg(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)]
        panic!($($arg)+);
        #[cfg(not(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))]
        const_panic!(@non_panic $($arg)+)
    }};
}

/// Either assert (if the current Rust toolchain supports panicking in `const
/// fn`) or evaluate the expression and, if it evaluates to `false`, call
/// `const_panic!`. This is used in place of `assert!` in const contexts to
/// accommodate old toolchains.
macro_rules! const_assert {
    ($e:expr) => {{
        #[cfg(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)]
        assert!($e);
        #[cfg(not(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))]
        {
            let e = $e;
            if !e {
                let _: () = const_panic!(@non_panic concat!("assertion failed: ", stringify!($e)));
            }
        }
    }};
    ($e:expr, $($args:tt)+) => {{
        #[cfg(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)]
        assert!($e, $($args)+);
        #[cfg(not(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))]
        {
            let e = $e;
            if !e {
                let _: () = const_panic!(@non_panic concat!("assertion failed: ", stringify!($e), ": ", stringify!($arg)), $($args)*);
            }
        }
    }};
}

/// Like `const_assert!`, but relative to `debug_assert!`.
macro_rules! const_debug_assert {
    ($e:expr $(, $msg:expr)?) => {{
        #[cfg(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)]
        debug_assert!($e $(, $msg)?);
        #[cfg(not(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))]
        {
            // Use this (rather than `#[cfg(debug_assertions)]`) to ensure that
            // `$e` is always compiled even if it will never be evaluated at
            // runtime.
            if cfg!(debug_assertions) {
                let e = $e;
                if !e {
                    let _: () = const_panic!(@non_panic concat!("assertion failed: ", stringify!($e) $(, ": ", $msg)?));
                }
            }
        }
    }}
}

/// Either invoke `unreachable!()` or `loop {}` depending on whether the Rust
/// toolchain supports panicking in `const fn`.
macro_rules! const_unreachable {
    () => {{
        #[cfg(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)]
        unreachable!();

        #[cfg(not(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))]
        loop {}
    }};
}

/// Asserts at compile time that `$condition` is true for `Self` or the given
/// `$tyvar`s. Unlike `const_assert`, this is *strictly* a compile-time check;
/// it cannot be evaluated in a runtime context. The condition is checked after
/// monomorphization and, upon failure, emits a compile error.
macro_rules! static_assert {
    (Self $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )? => $condition:expr $(, $args:tt)*) => {{
        trait StaticAssert {
            const ASSERT: bool;
        }

        impl<T $(: $(? $optbound +)* $($bound +)*)?> StaticAssert for T {
            const ASSERT: bool = {
                const_assert!($condition $(, $args)*);
                $condition
            };
        }

        const_assert!(<Self as StaticAssert>::ASSERT);
    }};
    ($($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?),* => $condition:expr $(, $args:tt)*) => {{
        trait StaticAssert {
            const ASSERT: bool;
        }

        impl<$($tyvar $(: $(? $optbound +)* $($bound +)*)?,)*> StaticAssert for ($($tyvar,)*) {
            const ASSERT: bool = {
                const_assert!($condition $(, $args)*);
                $condition
            };
        }

        const_assert!(<($($tyvar,)*) as StaticAssert>::ASSERT);
    }};
}

/// Assert at compile time that `tyvar` does not have a zero-sized DST
/// component.
macro_rules! static_assert_dst_is_not_zst {
    ($tyvar:ident) => {{
        use crate::KnownLayout;
        static_assert!($tyvar: ?Sized + KnownLayout => {
            let dst_is_zst = match $tyvar::LAYOUT.size_info {
                crate::SizeInfo::Sized { .. } => false,
                crate::SizeInfo::SliceDst(TrailingSliceLayout { elem_size, .. }) => {
                    elem_size == 0
                }
            };
            !dst_is_zst
        }, "cannot call this method on a dynamically-sized type whose trailing slice element is zero-sized");
    }}
}