zerocopy/util/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
// Copyright 2023 The Fuchsia Authors
//
// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
// This file may not be copied, modified, or distributed except according to
// those terms.
#[macro_use]
mod macros;
#[doc(hidden)]
pub mod macro_util;
use core::{
cell::UnsafeCell,
marker::PhantomData,
mem::{self, ManuallyDrop, MaybeUninit},
num::{NonZeroUsize, Wrapping},
ptr::NonNull,
};
use crate::{
error::AlignmentError,
pointer::invariant::{self, Invariants},
Unalign,
};
/// A type which has the same layout as the type it wraps.
///
/// # Safety
///
/// `T: TransparentWrapper` implies that `T` has the same size as [`T::Inner`].
/// Further, `T: TransparentWrapper<I>` implies that:
/// - If `T::UnsafeCellVariance = Covariant`, then `T` has `UnsafeCell`s
/// covering the same byte ranges as `T::Inner`.
/// - If a `T` pointer satisfies the alignment invariant `I::Alignment`, then
/// that same pointer, cast to `T::Inner`, satisfies the alignment invariant
/// `<T::AlignmentVariance as AlignmentVariance<I::Alignment>>::Applied`.
/// - If a `T` pointer satisfies the validity invariant `I::Validity`, then that
/// same pointer, cast to `T::Inner`, satisfies the validity invariant
/// `<T::ValidityVariance as ValidityVariance<I::Validity>>::Applied`.
///
/// [`T::Inner`]: TransparentWrapper::Inner
/// [`UnsafeCell`]: core::cell::UnsafeCell
/// [`T::AlignmentVariance`]: TransparentWrapper::AlignmentVariance
/// [`T::ValidityVariance`]: TransparentWrapper::ValidityVariance
#[doc(hidden)]
pub unsafe trait TransparentWrapper<I: Invariants> {
type Inner: ?Sized;
type UnsafeCellVariance;
type AlignmentVariance: AlignmentVariance<I::Alignment>;
type ValidityVariance: ValidityVariance<I::Validity>;
/// Casts a wrapper pointer to an inner pointer.
///
/// # Safety
///
/// The resulting pointer has the same address and provenance as `ptr`, and
/// addresses the same number of bytes.
fn cast_into_inner(ptr: *mut Self) -> *mut Self::Inner;
/// Casts an inner pointer to a wrapper pointer.
///
/// # Safety
///
/// The resulting pointer has the same address and provenance as `ptr`, and
/// addresses the same number of bytes.
fn cast_from_inner(ptr: *mut Self::Inner) -> *mut Self;
}
#[allow(unreachable_pub)]
#[doc(hidden)]
pub trait AlignmentVariance<I: invariant::Alignment> {
type Applied: invariant::Alignment;
}
#[allow(unreachable_pub)]
#[doc(hidden)]
pub trait ValidityVariance<I: invariant::Validity> {
type Applied: invariant::Validity;
}
#[doc(hidden)]
#[allow(missing_copy_implementations, missing_debug_implementations)]
pub enum Covariant {}
impl<I: invariant::Alignment> AlignmentVariance<I> for Covariant {
type Applied = I;
}
impl<I: invariant::Validity> ValidityVariance<I> for Covariant {
type Applied = I;
}
#[doc(hidden)]
#[allow(missing_copy_implementations, missing_debug_implementations)]
pub enum Invariant {}
impl<I: invariant::Alignment> AlignmentVariance<I> for Invariant {
type Applied = invariant::Any;
}
impl<I: invariant::Validity> ValidityVariance<I> for Invariant {
type Applied = invariant::Any;
}
// SAFETY:
// - Per [1], `MaybeUninit<T>` has the same size as `T`.
// - See inline comments for other safety justifications.
//
// [1] Per https://doc.rust-lang.org/1.81.0/std/mem/union.MaybeUninit.html#layout-1:
//
// `MaybeUninit<T>` is guaranteed to have the same size, alignment, and ABI as
// `T`
unsafe impl<T, I: Invariants> TransparentWrapper<I> for MaybeUninit<T> {
type Inner = T;
// SAFETY: `MaybeUninit<T>` has `UnsafeCell`s covering the same byte ranges
// as `Inner = T`. This is not explicitly documented, but it can be
// inferred. Per [1] in the preceding safety comment, `MaybeUninit<T>` has
// the same size as `T`. Further, note the signature of
// `MaybeUninit::assume_init_ref` [2]:
//
// pub unsafe fn assume_init_ref(&self) -> &T
//
// If the argument `&MaybeUninit<T>` and the returned `&T` had `UnsafeCell`s
// at different offsets, this would be unsound. Its existence is proof that
// this is not the case.
//
// [2] https://doc.rust-lang.org/1.81.0/std/mem/union.MaybeUninit.html#method.assume_init_ref
type UnsafeCellVariance = Covariant;
// SAFETY: Per [1], `MaybeUninit<T>` has the same layout as `T`, and thus
// has the same alignment as `T`.
//
// [1] Per https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#layout-1:
//
// `MaybeUninit<T>` is guaranteed to have the same size, alignment, and
// ABI as `T`.
type AlignmentVariance = Covariant;
// SAFETY: `MaybeUninit` has no validity invariants. Thus, a valid
// `MaybeUninit<T>` is not necessarily a valid `T`.
type ValidityVariance = Invariant;
#[inline(always)]
fn cast_into_inner(ptr: *mut MaybeUninit<T>) -> *mut T {
// SAFETY: Per [1] (from comment above), `MaybeUninit<T>` has the same
// layout as `T`. Thus, this cast preserves size.
//
// This cast trivially preserves provenance.
ptr.cast::<T>()
}
#[inline(always)]
fn cast_from_inner(ptr: *mut T) -> *mut MaybeUninit<T> {
// SAFETY: Per [1] (from comment above), `MaybeUninit<T>` has the same
// layout as `T`. Thus, this cast preserves size.
//
// This cast trivially preserves provenance.
ptr.cast::<MaybeUninit<T>>()
}
}
// SAFETY:
// - Per [1], `ManuallyDrop<T>` has the same size as `T`.
// - See inline comments for other safety justifications.
//
// [1] Per https://doc.rust-lang.org/1.81.0/std/mem/struct.ManuallyDrop.html:
//
// `ManuallyDrop<T>` is guaranteed to have the same layout and bit validity as
// `T`
unsafe impl<T: ?Sized, I: Invariants> TransparentWrapper<I> for ManuallyDrop<T> {
type Inner = T;
// SAFETY: Per [1], `ManuallyDrop<T>` has `UnsafeCell`s covering the same
// byte ranges as `Inner = T`.
//
// [1] Per https://doc.rust-lang.org/1.81.0/std/mem/struct.ManuallyDrop.html:
//
// `ManuallyDrop<T>` is guaranteed to have the same layout and bit
// validity as `T`, and is subject to the same layout optimizations as
// `T`. As a consequence, it has no effect on the assumptions that the
// compiler makes about its contents.
type UnsafeCellVariance = Covariant;
// SAFETY: Per [1], `ManuallyDrop<T>` has the same layout as `T`, and thus
// has the same alignment as `T`.
//
// [1] Per https://doc.rust-lang.org/nightly/core/mem/struct.ManuallyDrop.html:
//
// `ManuallyDrop<T>` is guaranteed to have the same layout and bit
// validity as `T`
type AlignmentVariance = Covariant;
// SAFETY: Per [1] (from comment above), `ManuallyDrop<T>` has the same bit
// validity as `T`.
type ValidityVariance = Covariant;
#[inline(always)]
fn cast_into_inner(ptr: *mut ManuallyDrop<T>) -> *mut T {
// SAFETY: Per [1] (from comment above), `ManuallyDrop<T>` has the same
// layout as `T`. Thus, this cast preserves size even if `T` is unsized.
//
// This cast trivially preserves provenance.
#[allow(clippy::as_conversions)]
return ptr as *mut T;
}
#[inline(always)]
fn cast_from_inner(ptr: *mut T) -> *mut ManuallyDrop<T> {
// SAFETY: Per [1] (from comment above), `ManuallyDrop<T>` has the same
// layout as `T`. Thus, this cast preserves size even if `T` is unsized.
//
// This cast trivially preserves provenance.
#[allow(clippy::as_conversions)]
return ptr as *mut ManuallyDrop<T>;
}
}
// SAFETY:
// - Per [1], `Wrapping<T>` has the same size as `T`.
// - See inline comments for other safety justifications.
//
// [1] Per https://doc.rust-lang.org/1.81.0/std/num/struct.Wrapping.html#layout-1:
//
// `Wrapping<T>` is guaranteed to have the same layout and ABI as `T`.
unsafe impl<T, I: Invariants> TransparentWrapper<I> for Wrapping<T> {
type Inner = T;
// SAFETY: Per [1], `Wrapping<T>` has the same layout as `T`. Since its
// single field (of type `T`) is public, it would be a breaking change to
// add or remove fields. Thus, we know that `Wrapping<T>` contains a `T` (as
// opposed to just having the same size and alignment as `T`) with no pre-
// or post-padding. Thus, `Wrapping<T>` must have `UnsafeCell`s covering the
// same byte ranges as `Inner = T`.
//
// [1] Per https://doc.rust-lang.org/1.81.0/std/num/struct.Wrapping.html#layout-1:
//
// `Wrapping<T>` is guaranteed to have the same layout and ABI as `T`.
type UnsafeCellVariance = Covariant;
// SAFETY: Per [1], `Wrapping<T>` has the same layout as `T`, and thus has
// the same alignment as `T`.
//
// [1] Per https://doc.rust-lang.org/core/num/struct.Wrapping.html#layout-1:
//
// `Wrapping<T>` is guaranteed to have the same layout and ABI as `T`.
type AlignmentVariance = Covariant;
// SAFETY: `Wrapping<T>` has only one field, which is `pub` [2]. We are also
// guaranteed per [1] (from the comment above) that `Wrapping<T>` has the
// same layout as `T`. The only way for both of these to be true
// simultaneously is for `Wrapping<T>` to have the same bit validity as `T`.
// In particular, in order to change the bit validity, one of the following
// would need to happen:
// - `Wrapping` could change its `repr`, but this would violate the layout
// guarantee.
// - `Wrapping` could add or change its fields, but this would be a
// stability-breaking change.
//
// [2] https://doc.rust-lang.org/core/num/struct.Wrapping.html
type ValidityVariance = Covariant;
#[inline(always)]
fn cast_into_inner(ptr: *mut Wrapping<T>) -> *mut T {
// SAFETY: Per [1] (from comment above), `Wrapping<T>` has the same
// layout as `T`. Thus, this cast preserves size.
//
// This cast trivially preserves provenance.
ptr.cast::<T>()
}
#[inline(always)]
fn cast_from_inner(ptr: *mut T) -> *mut Wrapping<T> {
// SAFETY: Per [1] (from comment above), `Wrapping<T>` has the same
// layout as `T`. Thus, this cast preserves size.
//
// This cast trivially preserves provenance.
ptr.cast::<Wrapping<T>>()
}
}
// SAFETY:
// - Per [1], `UnsafeCell<T>` has the same size as `T`.
// - See inline comments for other safety justifications.
//
// [1] Per https://doc.rust-lang.org/1.81.0/core/cell/struct.UnsafeCell.html#memory-layout:
//
// `UnsafeCell<T>` has the same in-memory representation as its inner type
// `T`.
unsafe impl<T: ?Sized, I: Invariants> TransparentWrapper<I> for UnsafeCell<T> {
type Inner = T;
// SAFETY: Since we set this to `Invariant`, we make no safety claims.
type UnsafeCellVariance = Invariant;
// SAFETY: Per [1] (from comment on impl), `Unalign<T>` has the same
// representation as `T`, and thus has the same alignment as `T`.
type AlignmentVariance = Covariant;
// SAFETY: Per [1], `Unalign<T>` has the same bit validity as `T`.
// Technically the term "representation" doesn't guarantee this, but the
// subsequent sentence in the documentation makes it clear that this is the
// intention.
//
// [1] Per https://doc.rust-lang.org/1.81.0/core/cell/struct.UnsafeCell.html#memory-layout:
//
// `UnsafeCell<T>` has the same in-memory representation as its inner type
// `T`. A consequence of this guarantee is that it is possible to convert
// between `T` and `UnsafeCell<T>`.
type ValidityVariance = Covariant;
#[inline(always)]
fn cast_into_inner(ptr: *mut UnsafeCell<T>) -> *mut T {
// SAFETY: Per [1] (from comment above), `UnsafeCell<T>` has the same
// representation as `T`. Thus, this cast preserves size.
//
// This cast trivially preserves provenance.
#[allow(clippy::as_conversions)]
return ptr as *mut T;
}
#[inline(always)]
fn cast_from_inner(ptr: *mut T) -> *mut UnsafeCell<T> {
// SAFETY: Per [1] (from comment above), `UnsafeCell<T>` has the same
// representation as `T`. Thus, this cast preserves size.
//
// This cast trivially preserves provenance.
#[allow(clippy::as_conversions)]
return ptr as *mut UnsafeCell<T>;
}
}
// SAFETY: `Unalign<T>` promises to have the same size as `T`.
//
// See inline comments for other safety justifications.
unsafe impl<T, I: Invariants> TransparentWrapper<I> for Unalign<T> {
type Inner = T;
// SAFETY: `Unalign<T>` promises to have `UnsafeCell`s covering the same
// byte ranges as `Inner = T`.
type UnsafeCellVariance = Covariant;
// SAFETY: Since `Unalign<T>` promises to have alignment 1 regardless of
// `T`'s alignment. Thus, an aligned pointer to `Unalign<T>` is not
// necessarily an aligned pointer to `T`.
type AlignmentVariance = Invariant;
// SAFETY: `Unalign<T>` promises to have the same validity as `T`.
type ValidityVariance = Covariant;
#[inline(always)]
fn cast_into_inner(ptr: *mut Unalign<T>) -> *mut T {
// SAFETY: Per the safety comment on the impl block, `Unalign<T>` has
// the size as `T`. Thus, this cast preserves size.
//
// This cast trivially preserves provenance.
ptr.cast::<T>()
}
#[inline(always)]
fn cast_from_inner(ptr: *mut T) -> *mut Unalign<T> {
// SAFETY: Per the safety comment on the impl block, `Unalign<T>` has
// the size as `T`. Thus, this cast preserves size.
//
// This cast trivially preserves provenance.
ptr.cast::<Unalign<T>>()
}
}
/// Implements `TransparentWrapper` for an atomic type.
///
/// # Safety
///
/// The caller promises that `$atomic` is an atomic type whose natie equivalent
/// is `$native`.
#[cfg(all(
zerocopy_target_has_atomics_1_60_0,
any(
target_has_atomic = "8",
target_has_atomic = "16",
target_has_atomic = "32",
target_has_atomic = "64",
target_has_atomic = "ptr"
)
))]
macro_rules! unsafe_impl_transparent_wrapper_for_atomic {
($(#[$attr:meta])* $(,)?) => {};
($(#[$attr:meta])* $atomic:ty [$native:ty], $($atomics:ty [$natives:ty]),* $(,)?) => {
$(#[$attr])*
// SAFETY: See safety comment in next match arm.
unsafe impl<I: crate::invariant::Invariants> crate::util::TransparentWrapper<I> for $atomic {
unsafe_impl_transparent_wrapper_for_atomic!(@inner $atomic [$native]);
}
unsafe_impl_transparent_wrapper_for_atomic!($(#[$attr])* $($atomics [$natives],)*);
};
($(#[$attr:meta])* $tyvar:ident => $atomic:ty [$native:ty]) => {
// We implement for `$atomic` and set `Inner = $native`. The caller has
// promised that `$atomic` and `$native` are an atomic type and its
// native counterpart, respectively. Per [1], `$atomic` and `$native`
// have the same size.
//
// [1] Per (for example) https://doc.rust-lang.org/1.81.0/std/sync/atomic/struct.AtomicU64.html:
//
// This type has the same size and bit validity as the underlying
// integer type
$(#[$attr])*
unsafe impl<$tyvar, I: crate::invariant::Invariants> crate::util::TransparentWrapper<I> for $atomic {
unsafe_impl_transparent_wrapper_for_atomic!(@inner $atomic [$native]);
}
};
(@inner $atomic:ty [$native:ty]) => {
type Inner = UnsafeCell<$native>;
// SAFETY: It is "obvious" that each atomic type contains a single
// `UnsafeCell` that covers all bytes of the type, but we can also prove
// it:
// - Since `$atomic` provides an API which permits loading and storing
// values of type `$native` via a `&self` (shared) reference, *some*
// interior mutation must be happening, and interior mutation can only
// happen via `UnsafeCell`. Further, there must be enough bytes in
// `$atomic` covered by an `UnsafeCell` to hold every possible value
// of `$native`.
// - Per [1], `$atomic` has the same size as `$native`. This on its own
// isn't enough: it would still be possible for `$atomic` to store
// `$native` using a compact representation (for `$native` types for
// which some bit patterns are illegal). However, this is ruled out by
// the fact that `$atomic` has the same bit validity as `$native` [1].
// Thus, we can conclude that every byte of `$atomic` must be covered
// by an `UnsafeCell`.
//
// Thus, every byte of `$atomic` is covered by an `UnsafeCell`, and we
// set `type Inner = UnsafeCell<$native>`. Thus, `Self` and
// `Self::Inner` have `UnsafeCell`s covering the same byte ranges.
//
// [1] Per (for example) https://doc.rust-lang.org/1.81.0/std/sync/atomic/struct.AtomicU64.html:
//
// This type has the same size and bit validity as the underlying
// integer type
type UnsafeCellVariance = crate::util::Covariant;
// SAFETY: No safety justification is required for an invariant
// variance.
type AlignmentVariance = crate::util::Invariant;
// SAFETY: Per [1], all atomic types have the same bit validity as their
// native counterparts. The caller has promised that `$atomic` and
// `$native` are an atomic type and its native counterpart,
// respectively.
//
// [1] Per (for example) https://doc.rust-lang.org/1.81.0/std/sync/atomic/struct.AtomicU64.html:
//
// This type has the same size and bit validity as the underlying
// integer type
type ValidityVariance = crate::util::Covariant;
#[inline(always)]
fn cast_into_inner(ptr: *mut $atomic) -> *mut UnsafeCell<$native> {
// SAFETY: Per [1] (from comment on impl block), `$atomic` has the
// same size as `$native`. Thus, this cast preserves size.
//
// This cast trivially preserves provenance.
ptr.cast::<UnsafeCell<$native>>()
}
#[inline(always)]
fn cast_from_inner(ptr: *mut UnsafeCell<$native>) -> *mut $atomic {
// SAFETY: Per [1] (from comment on impl block), `$atomic` has the
// same size as `$native`. Thus, this cast preserves size.
//
// This cast trivially preserves provenance.
ptr.cast::<$atomic>()
}
};
}
/// Like [`PhantomData`], but [`Send`] and [`Sync`] regardless of whether the
/// wrapped `T` is.
pub(crate) struct SendSyncPhantomData<T: ?Sized>(PhantomData<T>);
// SAFETY: `SendSyncPhantomData` does not enable any behavior which isn't sound
// to be called from multiple threads.
unsafe impl<T: ?Sized> Send for SendSyncPhantomData<T> {}
// SAFETY: `SendSyncPhantomData` does not enable any behavior which isn't sound
// to be called from multiple threads.
unsafe impl<T: ?Sized> Sync for SendSyncPhantomData<T> {}
impl<T: ?Sized> Default for SendSyncPhantomData<T> {
fn default() -> SendSyncPhantomData<T> {
SendSyncPhantomData(PhantomData)
}
}
impl<T: ?Sized> PartialEq for SendSyncPhantomData<T> {
fn eq(&self, other: &Self) -> bool {
self.0.eq(&other.0)
}
}
impl<T: ?Sized> Eq for SendSyncPhantomData<T> {}
pub(crate) trait AsAddress {
fn addr(self) -> usize;
}
impl<T: ?Sized> AsAddress for &T {
#[inline(always)]
fn addr(self) -> usize {
let ptr: *const T = self;
AsAddress::addr(ptr)
}
}
impl<T: ?Sized> AsAddress for &mut T {
#[inline(always)]
fn addr(self) -> usize {
let ptr: *const T = self;
AsAddress::addr(ptr)
}
}
impl<T: ?Sized> AsAddress for NonNull<T> {
#[inline(always)]
fn addr(self) -> usize {
AsAddress::addr(self.as_ptr())
}
}
impl<T: ?Sized> AsAddress for *const T {
#[inline(always)]
fn addr(self) -> usize {
// TODO(#181), TODO(https://github.com/rust-lang/rust/issues/95228): Use
// `.addr()` instead of `as usize` once it's stable, and get rid of this
// `allow`. Currently, `as usize` is the only way to accomplish this.
#[allow(clippy::as_conversions)]
#[cfg_attr(
__ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS,
allow(lossy_provenance_casts)
)]
return self.cast::<()>() as usize;
}
}
impl<T: ?Sized> AsAddress for *mut T {
#[inline(always)]
fn addr(self) -> usize {
let ptr: *const T = self;
AsAddress::addr(ptr)
}
}
/// Validates that `t` is aligned to `align_of::<U>()`.
#[inline(always)]
pub(crate) fn validate_aligned_to<T: AsAddress, U>(t: T) -> Result<(), AlignmentError<(), U>> {
// `mem::align_of::<U>()` is guaranteed to return a non-zero value, which in
// turn guarantees that this mod operation will not panic.
#[allow(clippy::arithmetic_side_effects)]
let remainder = t.addr() % mem::align_of::<U>();
if remainder == 0 {
Ok(())
} else {
// SAFETY: We just confirmed that `t.addr() % align_of::<U>() != 0`.
// That's only possible if `align_of::<U>() > 1`.
Err(unsafe { AlignmentError::new_unchecked(()) })
}
}
/// Returns the bytes needed to pad `len` to the next multiple of `align`.
///
/// This function assumes that align is a power of two; there are no guarantees
/// on the answer it gives if this is not the case.
pub(crate) const fn padding_needed_for(len: usize, align: NonZeroUsize) -> usize {
// Abstractly, we want to compute:
// align - (len % align).
// Handling the case where len%align is 0.
// Because align is a power of two, len % align = len & (align-1).
// Guaranteed not to underflow as align is nonzero.
#[allow(clippy::arithmetic_side_effects)]
let mask = align.get() - 1;
// To efficiently subtract this value from align, we can use the bitwise complement.
// Note that ((!len) & (align-1)) gives us a number that with (len &
// (align-1)) sums to align-1. So subtracting 1 from x before taking the
// complement subtracts `len` from `align`. Some quick inspection of
// cases shows that this also handles the case where `len % align = 0`
// correctly too: len-1 % align then equals align-1, so the complement mod
// align will be 0, as desired.
//
// The following reasoning can be verified quickly by an SMT solver
// supporting the theory of bitvectors:
// ```smtlib
// ; Naive implementation of padding
// (define-fun padding1 (
// (len (_ BitVec 32))
// (align (_ BitVec 32))) (_ BitVec 32)
// (ite
// (= (_ bv0 32) (bvand len (bvsub align (_ bv1 32))))
// (_ bv0 32)
// (bvsub align (bvand len (bvsub align (_ bv1 32))))))
//
// ; The implementation below
// (define-fun padding2 (
// (len (_ BitVec 32))
// (align (_ BitVec 32))) (_ BitVec 32)
// (bvand (bvnot (bvsub len (_ bv1 32))) (bvsub align (_ bv1 32))))
//
// (define-fun is-power-of-two ((x (_ BitVec 32))) Bool
// (= (_ bv0 32) (bvand x (bvsub x (_ bv1 32)))))
//
// (declare-const len (_ BitVec 32))
// (declare-const align (_ BitVec 32))
// ; Search for a case where align is a power of two and padding2 disagrees with padding1
// (assert (and (is-power-of-two align)
// (not (= (padding1 len align) (padding2 len align)))))
// (simplify (padding1 (_ bv300 32) (_ bv32 32))) ; 20
// (simplify (padding2 (_ bv300 32) (_ bv32 32))) ; 20
// (simplify (padding1 (_ bv322 32) (_ bv32 32))) ; 30
// (simplify (padding2 (_ bv322 32) (_ bv32 32))) ; 30
// (simplify (padding1 (_ bv8 32) (_ bv8 32))) ; 0
// (simplify (padding2 (_ bv8 32) (_ bv8 32))) ; 0
// (check-sat) ; unsat, also works for 64-bit bitvectors
// ```
!(len.wrapping_sub(1)) & mask
}
/// Rounds `n` down to the largest value `m` such that `m <= n` and `m % align
/// == 0`.
///
/// # Panics
///
/// May panic if `align` is not a power of two. Even if it doesn't panic in this
/// case, it will produce nonsense results.
#[inline(always)]
pub(crate) const fn round_down_to_next_multiple_of_alignment(
n: usize,
align: NonZeroUsize,
) -> usize {
let align = align.get();
#[cfg(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)]
debug_assert!(align.is_power_of_two());
// Subtraction can't underflow because `align.get() >= 1`.
#[allow(clippy::arithmetic_side_effects)]
let mask = !(align - 1);
n & mask
}
pub(crate) const fn max(a: NonZeroUsize, b: NonZeroUsize) -> NonZeroUsize {
if a.get() < b.get() {
b
} else {
a
}
}
pub(crate) const fn min(a: NonZeroUsize, b: NonZeroUsize) -> NonZeroUsize {
if a.get() > b.get() {
b
} else {
a
}
}
/// Copies `src` into the prefix of `dst`.
///
/// # Safety
///
/// The caller guarantees that `src.len() <= dst.len()`.
#[inline(always)]
pub(crate) unsafe fn copy_unchecked(src: &[u8], dst: &mut [u8]) {
debug_assert!(src.len() <= dst.len());
// SAFETY: This invocation satisfies the safety contract of
// copy_nonoverlapping [1]:
// - `src.as_ptr()` is trivially valid for reads of `src.len()` bytes
// - `dst.as_ptr()` is valid for writes of `src.len()` bytes, because the
// caller has promised that `src.len() <= dst.len()`
// - `src` and `dst` are, trivially, properly aligned
// - the region of memory beginning at `src` with a size of `src.len()`
// bytes does not overlap with the region of memory beginning at `dst`
// with the same size, because `dst` is derived from an exclusive
// reference.
unsafe {
core::ptr::copy_nonoverlapping(src.as_ptr(), dst.as_mut_ptr(), src.len());
};
}
/// Since we support multiple versions of Rust, there are often features which
/// have been stabilized in the most recent stable release which do not yet
/// exist (stably) on our MSRV. This module provides polyfills for those
/// features so that we can write more "modern" code, and just remove the
/// polyfill once our MSRV supports the corresponding feature. Without this,
/// we'd have to write worse/more verbose code and leave TODO comments sprinkled
/// throughout the codebase to update to the new pattern once it's stabilized.
///
/// Each trait is imported as `_` at the crate root; each polyfill should "just
/// work" at usage sites.
pub(crate) mod polyfills {
use core::ptr::{self, NonNull};
// A polyfill for `NonNull::slice_from_raw_parts` that we can use before our
// MSRV is 1.70, when that function was stabilized.
//
// The `#[allow(unused)]` is necessary because, on sufficiently recent
// toolchain versions, `ptr.slice_from_raw_parts()` resolves to the inherent
// method rather than to this trait, and so this trait is considered unused.
//
// TODO(#67): Once our MSRV is 1.70, remove this.
#[allow(unused)]
pub(crate) trait NonNullExt<T> {
fn slice_from_raw_parts(data: Self, len: usize) -> NonNull<[T]>;
}
impl<T> NonNullExt<T> for NonNull<T> {
// NOTE on coverage: this will never be tested in nightly since it's a
// polyfill for a feature which has been stabilized on our nightly
// toolchain.
#[cfg_attr(coverage_nightly, coverage(off))]
#[inline(always)]
fn slice_from_raw_parts(data: Self, len: usize) -> NonNull<[T]> {
let ptr = ptr::slice_from_raw_parts_mut(data.as_ptr(), len);
// SAFETY: `ptr` is converted from `data`, which is non-null.
unsafe { NonNull::new_unchecked(ptr) }
}
}
// A polyfill for `Self::unchecked_sub` that we can use until methods like
// `usize::unchecked_sub` is stabilized.
//
// The `#[allow(unused)]` is necessary because, on sufficiently recent
// toolchain versions, `ptr.slice_from_raw_parts()` resolves to the inherent
// method rather than to this trait, and so this trait is considered unused.
//
// TODO(#67): Once our MSRV is high enough, remove this.
#[allow(unused)]
pub(crate) trait NumExt {
/// Subtract without checking for underflow.
///
/// # Safety
///
/// The caller promises that the subtraction will not underflow.
unsafe fn unchecked_sub(self, rhs: Self) -> Self;
}
impl NumExt for usize {
// NOTE on coverage: this will never be tested in nightly since it's a
// polyfill for a feature which has been stabilized on our nightly
// toolchain.
#[cfg_attr(coverage_nightly, coverage(off))]
#[inline(always)]
unsafe fn unchecked_sub(self, rhs: usize) -> usize {
match self.checked_sub(rhs) {
Some(x) => x,
None => {
// SAFETY: The caller promises that the subtraction will not
// underflow.
unsafe { core::hint::unreachable_unchecked() }
}
}
}
}
}
#[cfg(test)]
pub(crate) mod testutil {
use crate::*;
/// A `T` which is aligned to at least `align_of::<A>()`.
#[derive(Default)]
pub(crate) struct Align<T, A> {
pub(crate) t: T,
_a: [A; 0],
}
impl<T: Default, A> Align<T, A> {
pub(crate) fn set_default(&mut self) {
self.t = T::default();
}
}
impl<T, A> Align<T, A> {
pub(crate) const fn new(t: T) -> Align<T, A> {
Align { t, _a: [] }
}
}
/// A `T` which is guaranteed not to satisfy `align_of::<A>()`.
///
/// It must be the case that `align_of::<T>() < align_of::<A>()` in order
/// fot this type to work properly.
#[repr(C)]
pub(crate) struct ForceUnalign<T: Unaligned, A> {
// The outer struct is aligned to `A`, and, thanks to `repr(C)`, `t` is
// placed at the minimum offset that guarantees its alignment. If
// `align_of::<T>() < align_of::<A>()`, then that offset will be
// guaranteed *not* to satisfy `align_of::<A>()`.
//
// Note that we need `T: Unaligned` in order to guarantee that there is
// no padding between `_u` and `t`.
_u: u8,
pub(crate) t: T,
_a: [A; 0],
}
impl<T: Unaligned, A> ForceUnalign<T, A> {
pub(crate) fn new(t: T) -> ForceUnalign<T, A> {
ForceUnalign { _u: 0, t, _a: [] }
}
}
// A `u64` with alignment 8.
//
// Though `u64` has alignment 8 on some platforms, it's not guaranteed. By
// contrast, `AU64` is guaranteed to have alignment 8 on all platforms.
#[derive(
KnownLayout,
Immutable,
FromBytes,
IntoBytes,
Eq,
PartialEq,
Ord,
PartialOrd,
Default,
Debug,
Copy,
Clone,
)]
#[repr(C, align(8))]
pub(crate) struct AU64(pub(crate) u64);
impl AU64 {
// Converts this `AU64` to bytes using this platform's endianness.
pub(crate) fn to_bytes(self) -> [u8; 8] {
crate::transmute!(self)
}
}
impl Display for AU64 {
#[cfg_attr(coverage_nightly, coverage(off))]
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
Display::fmt(&self.0, f)
}
}
#[derive(Immutable, FromBytes, Eq, PartialEq, Ord, PartialOrd, Default, Debug, Copy, Clone)]
#[repr(C)]
pub(crate) struct Nested<T, U: ?Sized> {
_t: T,
_u: U,
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_round_down_to_next_multiple_of_alignment() {
fn alt_impl(n: usize, align: NonZeroUsize) -> usize {
let mul = n / align.get();
mul * align.get()
}
for align in [1, 2, 4, 8, 16] {
for n in 0..256 {
let align = NonZeroUsize::new(align).unwrap();
let want = alt_impl(n, align);
let got = round_down_to_next_multiple_of_alignment(n, align);
assert_eq!(got, want, "round_down_to_next_multiple_of_alignment({}, {})", n, align);
}
}
}
#[rustversion::since(1.57.0)]
#[test]
#[should_panic]
fn test_round_down_to_next_multiple_of_alignment_zerocopy_panic_in_const_and_vec_try_reserve() {
round_down_to_next_multiple_of_alignment(0, NonZeroUsize::new(3).unwrap());
}
}
#[cfg(kani)]
mod proofs {
use super::*;
#[kani::proof]
fn prove_round_down_to_next_multiple_of_alignment() {
fn model_impl(n: usize, align: NonZeroUsize) -> usize {
assert!(align.get().is_power_of_two());
let mul = n / align.get();
mul * align.get()
}
let align: NonZeroUsize = kani::any();
kani::assume(align.get().is_power_of_two());
let n: usize = kani::any();
let expected = model_impl(n, align);
let actual = round_down_to_next_multiple_of_alignment(n, align);
assert_eq!(expected, actual, "round_down_to_next_multiple_of_alignment({}, {})", n, align);
}
// Restricted to nightly since we use the unstable `usize::next_multiple_of`
// in our model implementation.
#[cfg(__ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS)]
#[kani::proof]
fn prove_padding_needed_for() {
fn model_impl(len: usize, align: NonZeroUsize) -> usize {
let padded = len.next_multiple_of(align.get());
let padding = padded - len;
padding
}
let align: NonZeroUsize = kani::any();
kani::assume(align.get().is_power_of_two());
let len: usize = kani::any();
// Constrain `len` to valid Rust lengths, since our model implementation
// isn't robust to overflow.
kani::assume(len <= isize::MAX as usize);
kani::assume(align.get() < 1 << 29);
let expected = model_impl(len, align);
let actual = padding_needed_for(len, align);
assert_eq!(expected, actual, "padding_needed_for({}, {})", len, align);
let padded_len = actual + len;
assert_eq!(padded_len % align, 0);
assert!(padded_len / align >= len / align);
}
}